153,364 views
37 votes
37 votes
3.Solve the system of equations by forming a matrix equation. Solve by multiplying each side of the system of equations by the inverse matrix. Show computation of the inverse matrix by showing the calculation of the determinant. State your answer as an ordered pair. x+5 = - 14-2x-5y = 23

User Shishir Gupta
by
2.8k points

1 Answer

17 votes
17 votes

SOLUTION

We want to solve the simultaneous equation


\begin{gathered} x+5=-14 \\ -2x-5y=23 \end{gathered}

We will rearrage this to become


\begin{gathered} x+0y=-19 \\ -2x-5y=23 \end{gathered}

Writing this as a matrix equation, we get


\begin{bmatrix}{1} & {0} & {} \\ {-2} & {-5} & \end{bmatrix}\begin{bmatrix}{x} & {} \\ {y} & \end{bmatrix}=\begin{bmatrix}{-19} & {} \\ {23} & \end{bmatrix}

From the above matrix equation we will take


\begin{gathered} A=\begin{bmatrix}{1} & {0} & {} \\ {-2} & {-5} & \end{bmatrix} \\ B=\begin{bmatrix}{x} & {} \\ {y} & \end{bmatrix} \\ C=\begin{bmatrix}{-19} & {} \\ {23} & \end{bmatrix} \end{gathered}

So, this means that


\begin{gathered} A* B=C \\ AB=C \\ B=(C)/(A) \\ B=C* A^(-1) \\ B=CA^(-1) \end{gathered}

Now, we have to find the inverse matrix, which is


A^(-1)

This is given as


\begin{gathered} A^(-1)=(1)/(|A|)* Adj\text{ A} \\ A^(-1)=(1)/(ad-bc)*\begin{bmatrix}{d} & {-b} & {} \\ {-c} & {a} & \end{bmatrix} \end{gathered}

So, if we have


\begin{bmatrix}{a} & {b} & {} \\ {c} & {d} & \end{bmatrix}=\begin{bmatrix}{1} & {0} & {} \\ {-2} & {-5} & \end{bmatrix}

Then


\begin{gathered} A^(-1)=(1)/(ad-bc)*\begin{bmatrix}{d} & {-b} & {} \\ {-c} & {a} & \end{bmatrix} \\ A^(-1)=(1)/(1(-5)-0(-2))*\begin{bmatrix}{-5} & {0} & {} \\ {2} & {1} & \end{bmatrix} \\ A^(-1)=(1)/(-5)\begin{bmatrix}{-5} & {0} & {} \\ {2} & {1} & \end{bmatrix} \end{gathered}

Hence, the inverse matrix is


A^(-1)=(1)/(-5)\begin{bmatrix}{-5} & {0} & {} \\ {2} & {1} & \end{bmatrix}

Now, from


B=CA^(-1)

We will have


\begin{gathered} \begin{bmatrix}{x} & {} \\ {y} & \end{bmatrix}=(1)/(-5)\begin{bmatrix}{-5} & {0} & {} \\ {2} & {1} & \end{bmatrix}\begin{bmatrix}{-19} & {} \\ {23} & \end{bmatrix} \\ \begin{bmatrix}{x} & {} \\ {y} & \end{bmatrix}=(1)/(-5)\begin{bmatrix}{95} & {} \\ {-38+23} & \end{bmatrix} \\ \begin{bmatrix}{x} & {} \\ {y} & \end{bmatrix}=(1)/(-5)\begin{bmatrix}{95} & {} \\ {-15} & \end{bmatrix} \\ \begin{bmatrix}{x} & {} \\ {y} & \end{bmatrix}=\begin{bmatrix}{-19} & {} \\ {3} & \end{bmatrix} \end{gathered}

Hence from the matrix,

x = -19 and y = 3

User Ashraf Revo
by
2.8k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.