27.0k views
1 vote
H(x) = x2 + 1 k(x) = x – 2 (h + k)(2) = (h – k)(3) = Evaluate 3h(2) + 2k(3) =

1 Answer

7 votes

For this case we have the following functions:


h (x) = x ^ 2 + 1


k (x) = x - 2

We must perform each of the operations shown.

We have then:

For (h + k) (2):


(h + k) (x) = h (x) + k (x)


(h + k) (x) = (x ^ 2 + 1) + (x - 2)


(h + k) (x) = x ^ 2 + x - 1

Evaluating for x = 2 we have:


(h + k) (2) = 2 ^ 2 + 2 - 1


(h + k) (2) = 4 + 2 - 1


(h + k) (2) = 5

For (h - k) (3):


(h - k) (x) = h (x) -k (x)


(h - k) (x) = (x ^ 2 + 1) - (x - 2)


(h - k) (x) = x ^ 2 - x + 3

Evaluating for x = 3 we have:


(h - k) (3) = 3 ^ 2 - 3 + 3


(h - k) (3) = 9 - 3 + 3


(h - k) (3) = 9

For 3h (2) + 2k (3):


3h (2) + 2k (3) = 3 (2 ^ 2 + 1) + 2 (3 - 2)


3h (2) + 2k (3) = 3 (5) + 2 (1)


3h (2) + 2k (3) = 15 + 2


3h (2) + 2k (3) = 17

Answer:


(h + k) (2) = 5


(h - k) (3) = 9


3h (2) + 2k (3) = 17

User Hiery Nomus
by
8.2k points