57.8k views
3 votes
Prove that one of every three consecutive positive integer is divisible by 3

1 Answer

3 votes
hello :
all n in N ; n(n+1)(n+2) = 3a a in N or : ≡ 0 (mod 3)
1 ) n ≡ 0 ( mod 3)...(1)

n+1
≡ 1 ( mod 3)...(2)
n+2 ≡ 2 ( mod 3)...(3)
by (1), (2), (3) : n(n+1)(n+2) ≡ 0×1×2 ( mod 3) : ≡ 0 (mod 3)
2) n ≡ 1 ( mod 3)...(1)

n+1 ≡ 2 ( mod 3)...(2)
n+2 ≡ 3 ( mod 3)...(3)
by (1), (2), (3) : n(n+1)(n+2) ≡ 1×2 × 3 ( mod 3) : ≡ 0 (mod 3) , 6≡ 0 (mod)
3) n ≡ 2 ( mod 3)...(1)

n+1 ≡ 3 ( mod 3)...(2)
n+2 ≡ 4 ( mod 3)...(3)
by (1), (2), (3) : n(n+1)(n+2) ≡ 2×3 × 4 ( mod 3) : ≡ 0 (mod 3) , 24≡ 0 (mod3)
User Cbz
by
7.4k points