20.0k views
3 votes
Which expression is equivalent to (4y^2)^3 (3y^2)

User Jamespick
by
7.2k points

2 Answers

5 votes
192y^8 is your answer
User Audree
by
7.4k points
1 vote

Given expression:
\left(4y^2\right)^3\left(3y^2\right).


\mathrm{Apply\:exponent\:rule}:\quad \left(ab\right)^c=a^cb^c


\left(4y^2\right)^3=4^3\left(y^2\right)^3


\mathrm{Apply\:exponent\:rule}:\quad \left(a^b\right)^c=a^(bc)


\left(y^2\right)^3=y^(2\cdot \:3)=y^6


\left(4y^2\right)^3\cdot \:3y^2=4^3y^6\cdot \:3y^2


\mathrm{Apply\:exponent\:rule}:\quad \:a^b\cdot \:a^c=a^(b+c)


y^6y^2=\:y^(6+2)=\:y^8


=4^3\cdot \:3y^8


=192y^8

Therefore,
192y^8 expression is equivalent to
\left(4y^2\right)^3\:\left(3y^2\right).

User Mysterywood
by
6.8k points