163k views
5 votes
The probability of getting disease X (event A) is 0.65 and the probability of getting disease Y (event B) is 0.76. The probability of getting both disease X and disease Y is 0.494. Are events A and B dependent or independent?

In this scenario, A and B are ______ events.

2 Answers

6 votes
The 2 events are independent since the occurrence of one doesn't affect the occurrence of the other and P(A∩B) = P(A) x P(B) = 0.65 x 0.76 = 0.494
User Snilleblixten
by
7.8k points
5 votes
ANSWER

Step-by-step explanation

Events A and B are independent events if and only if


P(A \: and \: B)=P(A) * P(B)

We were given that, the probability of getting disease X, which is event A is,


P(A) = 0.65

and the probability of getting disease Y, which is event B, is


P(B) = 0.76

and


P(A \: and \: B)=0.494

Now, let us find the probability of getting both disease X and Y,


P(A \: and \: B)=0.65 * 0.76


P(A \: and \: B)=0.494

Since


P(A \: and \: B)=P(A) * P(B)

The two events are independent. Therefore A and B are independent events.
User Nkukhar
by
7.8k points