2.7k views
2 votes
Evaluate the integral. (Remember to use absolute values where appropriate. Use C for the constant of integration.)

Evaluate the integral. (Remember to use absolute values where appropriate. Use C for-example-1
User Selvin
by
7.7k points

1 Answer

7 votes

(x^3+2x^2+5x-2)/((x^2+2x+2)^2)=(3x-2)/((x^2+2x+2)^2)+\frac x{x^2+2x+2}

For the remaining integrals, we can complete the square in the denominator:


x^2+2x+2=(x+1)^2+1

and write each numerator as a polynomial
x+1:


3x-2=3(x+1)-5

x=(x+1)-1

then substitute
x+1=\tan y. Then
\mathrm dx=\sec^2y\,\mathrm dy, and we have


\displaystyle\int\left((3\tan t-5)/((\tan^2t+1)^2)+(\tan t-1)/(\tan^2t+1)\right)\sec^2t\,\mathrm dt

\displaystyle\int\left((3\tan t-5)/(\sec^2t)+\tan t-1\right)\,\mathrm dt

\displaystyle\int(3\tan t\cos^2t-5\cos^2t+\tan t-1)\,\mathrm dt

=-\frac32\cos^2t-5\left(\frac12t+\frac14\sin2t\right)-\ln|\cos t|-t+C

=-\frac32\cos^2t-\frac54\sin2t-\frac72t-\ln|\cos t|+C

Now
t=\arctan(x+1), so the above simplifies to


=-\frac3{2(x^2+2x+2)}-(5(x+1))/(2(x^2+2x+2))-\frac72\arctan(x+1)-\ln\frac1{√(x^2+2x+2)}+C

=-(5x+8)/(2(x^2+2x+2))-\frac72\arctan(x+1)+\frac12\ln(x^2+2x+2)+C
User Nicolina
by
8.2k points

No related questions found