2.7k views
2 votes
Evaluate the integral. (Remember to use absolute values where appropriate. Use C for the constant of integration.)

Evaluate the integral. (Remember to use absolute values where appropriate. Use C for-example-1
User Selvin
by
7.7k points

1 Answer

7 votes

(x^3+2x^2+5x-2)/((x^2+2x+2)^2)=(3x-2)/((x^2+2x+2)^2)+\frac x{x^2+2x+2}

For the remaining integrals, we can complete the square in the denominator:


x^2+2x+2=(x+1)^2+1

and write each numerator as a polynomial
x+1:


3x-2=3(x+1)-5

x=(x+1)-1

then substitute
x+1=\tan y. Then
\mathrm dx=\sec^2y\,\mathrm dy, and we have


\displaystyle\int\left((3\tan t-5)/((\tan^2t+1)^2)+(\tan t-1)/(\tan^2t+1)\right)\sec^2t\,\mathrm dt

\displaystyle\int\left((3\tan t-5)/(\sec^2t)+\tan t-1\right)\,\mathrm dt

\displaystyle\int(3\tan t\cos^2t-5\cos^2t+\tan t-1)\,\mathrm dt

=-\frac32\cos^2t-5\left(\frac12t+\frac14\sin2t\right)-\ln|\cos t|-t+C

=-\frac32\cos^2t-\frac54\sin2t-\frac72t-\ln|\cos t|+C

Now
t=\arctan(x+1), so the above simplifies to


=-\frac3{2(x^2+2x+2)}-(5(x+1))/(2(x^2+2x+2))-\frac72\arctan(x+1)-\ln\frac1{√(x^2+2x+2)}+C

=-(5x+8)/(2(x^2+2x+2))-\frac72\arctan(x+1)+\frac12\ln(x^2+2x+2)+C
User Nicolina
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories