137k views
4 votes
Hello, how can I do this equation?


9^x - 3 = 2 * 3^x

Please solve it with all steps and with an explanation.

Thanks!

User Kampu
by
9.0k points

1 Answer

7 votes
(9^x) - 3 = 2*3^x
(9^x) - 3 - (2*3^x) = (2*3^x) - (2*3^x)
(9^x) - (2*3^x) - 3 = 0
(3^2)^x - 2*(3^x) - 3 = 0
3^(2x) - 2*(3^x) - 3 = 0
3^(x*2) - 2*(3^x) - 3 = 0
(3^x)^2 - 2*(3^x) - 3 = 0
z^2 - 2*z - 3 = 0 ............ let z = 3^x
(z - 3)(z + 1) = 0

If z-3 = 0, then z = 3 when we isolate z
If z = 3, and z = 3^x, then
z = 3
3^x = 3
3^x = 3^1
x = 1
which is a solutin in terms of x

If z+1 = 0 then z = -1
If z = -1 and z = 3^x, then there are NO solutions for this part of the equation
The quantity 3^x is never negative no matter what the x value is

---------------------------------------------------------------

Answer: x = 1
User Ricardo Romo
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories