47,932 views
37 votes
37 votes
Suppose cosθ= -12/13 and sinθ > 0Determine the values of each of the other 5 trig functions.

User Golo Roden
by
2.8k points

1 Answer

18 votes
18 votes

step 1

Find the value of sin

we have that


\sin ^2(\theta)+\cos ^2(\theta)=1^{}

substitute the value of cosine


\begin{gathered} \sin ^2(\theta)+(-(12)/(13))^2=1^{} \\ \\ \sin ^2(\theta)^{}=1^{}-((144)/(169)) \\ \\ \sin ^2(\theta)^{}=((25)/(169)) \\ \\ \sin ^{}(\theta)^{}=(5)/(13) \end{gathered}

step 2

Find tan


\tan (\theta)=(\sin (\theta))/(\cos (\theta))

substitute the given values


\tan (\theta)=-(5)/(12)

step 3

Find cot


\cot (\theta)=(1)/(\tan (\theta))

substitute


\cot (\theta)=-(12)/(5)

step 4

Find sec


\sec (\theta)=(1)/(\cos (\theta))

substitute


\sec (\theta)=-(13)/(12)

step 5

Find csc


\csc (\theta)=(1)/(\sin (\theta))

substitute


\csc (\theta)=(13)/(5)

User Raylight
by
2.9k points