197k views
0 votes
Find the extreme values of f subject to both constraints

F (x , y , z ) = z ; x^2 + y^2 = z^2 , x + y + z = 24

1 Answer

4 votes
The Lagrangian is


L(x,y,z,\lambda_1,\lambda_2)=z+\lambda_1(x^2+y^2-z^2)+\lambda_2(x+y+z-24)

with partial derivatives (set equal to zero) yielding


\begin{cases}L_x=2x\lambda_1+\lambda_2=0\\L_y=2y\lambda_1+\lambda_2=0\\L_z=1-2z\lambda_1+\lambda_2=0\\L_(\lambda_1)=x^2+y^2-z^2=0\\L_(\lambda_2)=x+y+z-24=0\end{cases}

Subtracting the second equation from the first gives


(2x\lambda_1+\lambda_2)-(2y\lambda_1+\lambda_2)=2\lambda_1(x-y)=0\implies x=y

So in the fourth and fifth equations, we have


\begin{cases}2x^2=z^2\\2x+z=24\end{cases}\implies x=24\pm12\sqrt2,z=-24\mp24\sqrt2

There are then two critical points for
f(x,y,z)=z at
(24+12\sqrt2,24+12\sqrt2,-24-24\sqrt2) and
(24-12\sqrt2,24-12\sqrt2,-24+24\sqrt2).

Clearly,
f(x,y,z)=z attains a local minimum at the first point of
-24-24\sqrt2, and a local maximum at the second point of
-24+24\sqrt2.
User Obaylis
by
7.8k points

No related questions found