5.6k views
4 votes
Let sin A = 12/13 with 90º≤A≤180º and tan B = -4/3 with 270º≤B≤360º. Find tan (A - B).

A) -63/65
B)56/33
C)-16/63
D)65/56

User Kulikov
by
8.2k points

2 Answers

4 votes
Sin A=12/13 CosA=-5/13 TanA=-12/5
TanB=-4/3 SinB=-4/5 CosB=-3/5
=(2(56/65)(-64/65))/((-2(4/65)(56/65))
=(56/65)/(4/65)
=14
User Craesh
by
8.4k points
4 votes

\tan(A-B)=(\tan A-\tan B)/(1+\tan A\tan B)=(\tan A+\frac43)/(1-\frac43\tan A)


\cos^2A=1-\sin^2A\implies\cos A=\pm√(1-\sin^2A)

where the sign of the root is chosen depending on the value of
A. Since we know
90^\circ<A<180^\circ, it follows that
-1<\cos A<0, i.e.
\cos A<0, which means


\cos A=-√(1-\sin^2A)=-\frac5{13}


\implies\tan A=(\sin A)/(\cos A)=\frac{(12)/(13)}{-\frac5{13}}=-\frac{12}5


\implies\tan(A-B)=\frac{-\frac{12}5+\frac43}{1+\frac43*\frac{12}5}=-(16)/(63)
User Douglas Kastle
by
8.0k points

Related questions