218k views
3 votes
Find the exact value of tan((cos^-1)(12/13))

User Szzaass
by
8.2k points

1 Answer

3 votes
Let
x=\cos^(-1)(12)/(13), so that
\cos x=(12)/(13).

Recall that


\cos^2x+\sin^2x=1\implies\sin x=\frac5{13}

where we take the positive root because
\cos\theta is only invertible if
0\le\theta<\pi, and
\cos\theta>0 only if
0\le\theta<\frac\pi2, which means
\sin\theta>0.

Now,


\tan\left(\cos^(-1)(12)/(13)\right)=\tan x=(\sin x)/(\cos x)=\frac{\frac5{13}}{(12)/(13)}=\frac5{12}
User Tomsontom
by
7.8k points