27.2k views
2 votes
Points (2, 0) and (0, 3) lie on line k. What is the slope of the line that is perpendicular to k

1 Answer

4 votes

\bf \begin{array}{lllll} &x_1&y_1&x_2&y_2\\ % (a,b) &({{ 2}}\quad ,&{{ 0}})\quad % (c,d) &({{ 0}}\quad ,&{{ 3}}) \end{array} \\\\\\ % slope = m slope = {{ m}}= \cfrac{rise}{run} \implies \cfrac{{{ y_2}}-{{ y_1}}}{{{ x_2}}-{{ x_1}}}\implies \cfrac{3-0}{0-2}\implies \boxed{\cfrac{-3}{2}}\\\\ -------------------------------\\\\


\bf \textit{perpendicular lines have, negative-reciprocal slope}\\\\ slope=\cfrac{a}{{{ b}}}\qquad negative\implies -\cfrac{a}{{{ b}}}\qquad reciprocal\implies - \cfrac{{{ b}}}{a}\\\\ -------------------------------\\\\ thus \\\\\\ \cfrac{-3}{2}\qquad negative\implies \cfrac{3}{2}\qquad reciprocal\implies \boxed{\cfrac{2}{3}}
User Ramakrishna Guttha
by
9.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories