75.3k views
5 votes
Please show me how to solve the initial value problem
y'=tanx y(pi/4)=3

User Fil
by
7.6k points

1 Answer

2 votes
The ODE is separable, i.e. you can write


(\mathrm dy)/(\mathrm dx)=\tan x\iff\mathrm dy=\tan x\,\mathrm dx

Integrating both sides gives the general solution.


\displaystyle\int\mathrm dy=\int\tan x\,\mathrm dx

y=-\ln|\cos x|+C

Given that
y\left(\frac\pi4\right)=3, we have


3=-\ln\left|\cos\frac\pi4\right|+C

3=-\ln\frac1{\sqrt2}+C

3-\ln\sqrt2=C


and so the particular solution to the IVP is


y=-\ln|\cos x|+3-\ln\sqrt2

y=3-\ln|\sqrt2\cos x|
User Seamus Connor
by
7.9k points

No related questions found