216k views
4 votes
Use Pascal's triangle to find 6C3

Use Pascal's triangle to find 6C3-example-1
User Gowsikan
by
6.3k points

2 Answers

5 votes
ignore tht pascal triangle its way too inefficient
Formula nCr = n! /r! (n-r)!
So 6C3= 6!/3!(6-3)!=20
User Avi Youkhananov
by
5.5k points
2 votes

Using Pascal's triangle

Number of terms Expression

1 = 1----------------------------
(x+a)^0

2 = 1 1----------------------------(x+a)

3 = 1 2 1-----------
(x+a)^2

4= 1 3 3 1----------
(x+a)^3

5= 1 4 6 4 1----------
(x+a)^4

6= 1 5 10 10 5 1----------
(x+a)^5

7= 1 6 15 20 15 6 1 ----------
(x+a)^6

8= 1 7 21 35 35 21 7 1 ----------
(x+a)^7

The meaning of
_(3)^(6)\textrm{C} , is coefficient of fourth term of an expression having 7 terms.

Using pascal Triangle value or coefficient of Fourth term of the expression


(x+a)^6=\\\\\text{will be}\\\\_(3)^(6)\textrm{C}=20

User SamRowley
by
6.2k points