181k views
12 votes
What is the approximate perimeter of a triangle with vertices at (5, -1),(2, -5), and ( -3, -7)?

User Idr
by
7.8k points

1 Answer

6 votes


~\hfill \stackrel{\textit{\large distance between 2 points}}{d = √(( x_2- x_1)^2 + ( y_2- y_1)^2)}~\hfill~ \\\\[-0.35em] ~\dotfill\\\\ (\stackrel{x_1}{5}~,~\stackrel{y_1}{-1})\qquad (\stackrel{x_2}{2}~,~\stackrel{y_2}{-5}) ~\hfill d1=√([ 2- 5]^2 + [ -5- (-1)]^2) \\\\\\ d1=√((-3)^2+(-5+1)^2)\implies d1=√(25)\implies \boxed{d1=5} \\\\[-0.35em] ~\dotfill


(\stackrel{x_1}{2}~,~\stackrel{y_1}{-5})\qquad (\stackrel{x_2}{-3}~,~\stackrel{y_2}{-7}) ~\hfill d2=√([ -3- 2]^2 + [ -7- (-5)]^2) \\\\\\ d2=√((-5)^2+(-7+5)^2)\implies d2=√(25+4)\implies \boxed{d2=√(29)} \\\\[-0.35em] ~\dotfill\\\\ (\stackrel{x_1}{-3}~,~\stackrel{y_1}{-7})\qquad (\stackrel{x_2}{5}~,~\stackrel{y_2}{-1}) ~\hfill d3=√([ 5- (-3)]^2 + [ -1- (-7)]^2) \\\\\\ d3=√((5+3)^2+(-1+7)^2)\implies d3=√(100)\implies \boxed{d3=10} \\\\[-0.35em] ~\dotfill


\stackrel{\textit{\large Perimeter}}{5+√(29)+10\implies 15+√(29)~~\approx~~20.39}

User Nikki Mather
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories