57.9k views
0 votes
How do you solve this question? Any help appreciated!

How do you solve this question? Any help appreciated!-example-1

1 Answer

3 votes

\bf \displaystyle \int\limits_(1)^(e)\cfrac{1}{t}\cdot dt\\\\ -------------------------------\\\\ \textit{doing substitution}\\\\ u=\cfrac{1}{t}\implies u=t^(-1)\implies \cfrac{du}{dt}=-t^(-2)\implies \cfrac{du}{dt}=-\cfrac{1}{t^2}\\\\\\ -t^2du=dt\\\\ -------------------------------\\\\ \displaystyle \int\limits_(1)^(e)u\cdot -t^2du\impliedby \textit{now, let's do some substitution on the


\bf u=\cfrac{1}{t}\implies t=\cfrac{1}{u}\implies t^2=\cfrac{1^2}{u^2}\implies t^2=\cfrac{1}{u^2}\\\\ -------------------------------\\\\ \displaystyle \int\limits_(1)^(e)u\cdot -\cfrac{1}{u^2}\cdot du\implies -1\int\limits_(1)^(e)\cfrac{1}{u}\cdot du\implies \left. -ln|u| \cfrac{}{}\right]_1^e


\bf \left. -ln\left( (1)/(t) \right) \cfrac{}{}\right]_1^e\implies \left[ -ln\left( (1)/(e) \right) \right]-\left[ -ln\left( (1)/(1) \right) \right]\implies \left[ -ln\left( e^(-1)\right) \right]-\left[ -ln\left( 1\right) \right] \\\\\\\ [-(-1)]-[-(0)]\implies 1-0\implies 1
User Gulbrandr
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories