89.6k views
1 vote
if you shift the quadratic parent function of f(x)=x^2 left twelve units what is the equation of the new function

1 Answer

0 votes

\bf \qquad \qquad \qquad \qquad \textit{function transformations} \\ \quad \\\\ \begin{array}{rllll} % left side templates f(x)=&{{ A}}({{ B}}x+{{ C}})+{{ D}} \\ \quad \\ y=&{{ A}}({{ B}}x+{{ C}})+{{ D}} \\ \quad \\ f(x)=&{{ A}}\sqrt{{{ B}}x+{{ C}}}+{{ D}} \\ \quad \\ f(x)=&{{ A}}(\mathbb{R})^{{{ B}}x+{{ C}}}+{{ D}} \\ \quad \\ f(x)=&{{ A}} sin\left({{ B }}x+{{ C}} \right)+{{ D}} \end{array}


\bf \begin{array}{llll} % right side info \bullet \textit{ stretches or shrinks horizontally by } {{ A}}\cdot {{ B}}\\\\ \bullet \textit{ flips it upside-down if }{{ A}}\textit{ is negative} \\\\ \bullet \textit{ horizontal shift by }\frac{{{ C}}}{{{ B}}}\\ \qquad if\ \frac{{{ C}}}{{{ B}}}\textit{ is negative, to the right}\\\\ \qquad if\ \frac{{{ C}}}{{{ B}}}\textit{ is positive, to the left}\\\\ \end{array}


\bf \begin{array}{llll} \bullet \textit{ vertical shift by }{{ D}}\\ \qquad if\ {{ D}}\textit{ is negative, downwards}\\\\ \qquad if\ {{ D}}\textit{ is positive, upwards}\\\\ \bullet \textit{ period of }\frac{2\pi }{{{ B}}} \end{array}

now, with that template in mind, let's take a peek at the equation then


\bf f(x)=x^2\implies \begin{array}{llcll} f(x)=&(1x&+0)^2\\ &\uparrow &\uparrow \\ &B&C\\ &\downarrow &\downarrow \\ &(1x&+12)^2 \end{array}\qquad \cfrac{C}{B}\implies \cfrac{12}{1}\implies +12 \\\\\\ f(x)=(1x+12)^2\iff f(x)=(x+12)^2
User Euphemia
by
7.4k points