218k views
0 votes
Find the laplace transform by intergration
f(t)=tcosh(3t)

1 Answer

5 votes

\mathcal L_s\{t\cosh3t\}=\displaystyle\int_0^\infty t\cosh3t e^(-st)\,\mathrm dt

Integrate by parts, setting


u_1=t\implies\mathrm du_1=\mathrm dt

\mathrm dv_1=\cosh3t e^(-st)\,\mathrm dt\implies v_1=\displaystyle\int\cosh3t e^(-st)\,\mathrm dt

To evaluate
v_1, integrate by parts again, this time setting


u_2=\cosh3t\implies\mathrm du_2=3\sinh3t\,\mathrm dt

\mathrm dv_2=\displaystyle\int e^(-st)\,\mathrm dt\implies v_2=-\frac1se^(-st)


\implies\displaystyle\int\cosh3te^(-st)\,\mathrm dt=-\frac1s\cosh3te^(-st)+\frac3s\int \sinh3te^(-st)

Integrate by parts yet again, with


u_3=\sinh3t\implies\mathrm du_3=3\cosh3t\,\mathrm dt

\mathrm dv_3=e^(-st)\,\mathrm dt\implies v_3=-\frac1se^(-st)


\implies\displaystyle\int\cosh3te^(-st)\,\mathrm dt=-\frac1s\cosh3te^(-st)+\frac3s\left(-\frac1s\sinh3te^(-st)+\frac3s\int\cosh3te^(-st)\,\mathrm dt\right)

\displaystyle\int\cosh3te^(-st)\,\mathrm dt=-\frac1s\cosh3te^(-st)-\frac3{s^2}\sinh3te^(-st)+\frac9{s^2}\int\cosh3te^(-st)\,\mathrm dt

\displaystyle(s^2-9)/(s^2)\int\cosh3te^(-st)\,\mathrm dt=-\frac1s\cosh3te^(-st)-\frac3{s^2}\sinh3te^(-st)

\implies\displaystyle\underbrace{\int\cosh3te^(-st)\,\mathrm dt}_(v_1)=-((s\cosh3t+3\sinh3t)e^(-st))/(s^2-9)

So we have


\displaystyle\int_0^\infty t\cosh3t e^(-st)\,\mathrm dt=u_1v_1\big|_(t=0)^(t\to\infty)-\int_0^\infty v_1\,\mathrm du_1

=\displaystyle-(t(s\cosh3t+3\sinh3t)e^(-st))/(s^2-9)\bigg|_(t=0)^(t\to\infty)-\int_0^\infty \left(-((s\cosh3t+3\sinh3t)e^(-st))/(s^2-9)\right)\,\mathrm dt

=\displaystyle\frac1{s^2-9}\int_0^\infty(s\cosh3t+3\sinh3t)e^(-st)\,\mathrm dt

We already have the antiderivative for the first term:


\displaystyle\frac s{s^2-9}\int_0^\infty \cosh3te^(-st)\,\mathrm dt=\frac s{s^2-9}\left(-((s\cosh3t+3\sinh3t)e^(-st))/(s^2-9)\right)\bigg|_(t=0)^(t\to\infty)

=(s^2)/((s^2-9)^2)

And we can easily find the remaining term's antiderivative by integrating by parts (for the last time!), or by simply exchanging
\cosh with
\sinh in the derivation of
v_1, so that we have


\displaystyle\frac3{s^2-9}\int_0^\infty\sinh3te^(-st)\,\mathrm dt=\frac3{s^2-9}\left(-((s\sinh3t+3\cosh3t)e^(-st))/(s^2-9)\right)\bigg|_(t=0)^(t\to\infty)

=\frac9{(s^2-9)^2}

(The exchanging is permissible because
(\sinh x)'=\cosh x and
(\cosh x)'=\sinh x; there are no alternating signs to account for.)

And so we conclude that


\mathcal L_s\{t\cosh3t\}=(s^2+9)/((s^2-9)^2)
User Lovis
by
8.2k points

Related questions