137k views
3 votes
Use a cofunction identity to write an equivalent expression, sec(14°)

User Luizfzs
by
8.0k points

1 Answer

4 votes

\bf \textit{Cofunction Identities} \\ \quad \\ sin\left((\pi)/(2)-{{ \theta}}\right)=cos({{ \theta}})\qquad cos\left((\pi)/(2)-{{ \theta}}\right)=sin({{ \theta}}) \\ \quad \\ \quad \\ tan\left((\pi)/(2)-{{ \theta}}\right)=cot({{ \theta}})\qquad cot\left((\pi)/(2)-{{ \theta}}\right)=tan({{ \theta}}) \\ \quad \\ \quad \\ sec\left((\pi)/(2)-{{ \theta}}\right)=csc({{ \theta}})\qquad \boxed{csc\left((\pi)/(2)-{{ \theta}}\right)=sec({{ \theta}})}\\\\


\bf -----------------------------\\\\ sec(14^o)\implies csc\left( 90^o-14^o \right)\implies csc(76^o)
User Linens
by
8.4k points