13.1k views
2 votes
Hello, can you please express this without denominators with the work?


(a^4b)/(c^2d^3)

Thanks a lot!

1 Answer

3 votes

\bf a^{-{ n}} \implies \cfrac{1}{a^( n)}\qquad \qquad \cfrac{1}{a^( n)}\implies a^{-{ n}} \\ \quad \\ % negative exponential denominator a^{{ n}} \implies \cfrac{1}{a^(- n)} \qquad \qquad \cfrac{1}{a^(- n)}\implies \cfrac{1}{(1)/(a^( n))}\implies a^{{ n}} \\\\ -----------------------------\\\\ \cfrac{a^4b}{c^2d^3}\implies \cfrac{a^4}{1}\cdot \cfrac{b^1}{1}\cdot \cfrac{1}{c^2}\cdot \cfrac{1}{d^3}\implies a^4\cdot b^1\cdot c^(-2)\cdot d^(-3)\implies a^4bc^(-2)d^(-3)
User Justin Du Coeur
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories