18.5k views
0 votes
Rewrite 2tan3x in terms of tanx

User PriceyUK
by
8.4k points

1 Answer

2 votes

2\tan3x=2\tan(2x+x)=(2\tan2x+2\tan x)/(1-\tan2x\tan x)

Use the same identity to expand
\tan2x.


\tan2x=\tan(x+x)=(\tan x+\tan x)/(1-\tan x\tan x)=(2\tan x)/(1-\tan^2x)


\implies2\tan3x=(2(2\tan x)/(1-\tan^2x)+2\tan x)/(1-(2\tan x)/(1-\tan^2x)\tan x)

2\tan3x=\frac{2\tan x\left(\frac2{1-\tan^2x}+1\right)}{1-(2\tan^2x)/(1-\tan^2x)}

2\tan3x=(2\tan x\left(2+1-\tan^2x\right))/(1-\tan^2x-2\tan^2x)

2\tan3x=(2\tan x(3-\tan^2x))/(1-3\tan^2x)
User Curtis Allen
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories