162k views
4 votes
Given the parent function of f(x) = x4, what change will occur when the function is changed to −f(2x)?

User Syohex
by
8.0k points

2 Answers

0 votes

Answer:B

Explanation:

Graph opens the same way and is wider

User Turbokiwi
by
8.2k points
1 vote

\bf \qquad \qquad \qquad \qquad \textit{function transformations} \\ \quad \\\\ \begin{array}{rllll} % left side templates f(x)=&{{ A}}({{ B}}x+{{ C}})+{{ D}} \\ \quad \\ y=&{{ A}}({{ B}}x+{{ C}})+{{ D}} \\ \quad \\ f(x)=&{{ A}}\sqrt{{{ B}}x+{{ C}}}+{{ D}} \\ \quad \\ f(x)=&{{ A}}(\mathbb{R})^{{{ B}}x+{{ C}}}+{{ D}} \\ \quad \\ f(x)=&{{ A}} sin\left({{ B }}x+{{ C}} \right)+{{ D}} \end{array}


\bf \begin{array}{llll} % right side info \bullet \textit{ stretches or shrinks horizontally by } {{ A}}\cdot {{ B}}\\\\ \bullet \textit{ flips it upside-down if }{{ A}}\textit{ is negative} \\\\ \bullet \textit{ horizontal shift by }\frac{{{ C}}}{{{ B}}}\\ \qquad if\ \frac{{{ C}}}{{{ B}}}\textit{ is negative, to the right}\\\\ \qquad if\ \frac{{{ C}}}{{{ B}}}\textit{ is positive, to the left}\\\\ \end{array}


\bf \begin{array}{llll} \bullet \textit{ vertical shift by }{{ D}}\\ \qquad if\ {{ D}}\textit{ is negative, downwards}\\\\ \qquad if\ {{ D}}\textit{ is positive, upwards}\\\\ \bullet \textit{ period of }\frac{2\pi }{{{ B}}} \end{array}

now, keeping that template above in mind


\bf f(x)=x^4 \\\\\\ f(2x)=(2x)^4\implies f(2x)=2^4x^4\implies f(2x)=16x^4 \\\\\\ \boxed{-f(2x)=-16x^4}\impliedby \begin{array}{llll} \textit{the minus will flip it upside-down}\\ \textit{the 16 will shrink it} \end{array}

notice the picture below
Given the parent function of f(x) = x4, what change will occur when the function is-example-1
User Nahydrin
by
7.7k points