27.5k views
3 votes
1. The width w of a rectangular swimming pool is x+4. The area A of the pool is 2x^3-29+12. what is an expression for the length of the pool?

a. 2x^2+8x+3
b. 2x^2-8x-3
c. 2x^2-8x+3
d. 2x^2+8-3

2. simplify x/6x-x^2
a. 1/6-x; where x = 0,6
b. 1/6-x; where x=6
c. 1/6; where x=0
d. 1/6

3. simplify -12x4/x4+8x^5
a. -12/1+8x; where x= -1/8
b. -12/1+8x; where x= -1/8,0

4. simplify x+5/ x^2+6x+5
a. 1/x+1; where x= -1
b. 1/x+1; where x=-1, -5

5. simplify x^2-3x-18/x+3
a. x-3
b. x-6; where x= -3
c. x-6; where x= 6
d. 1/x+3; where x= -3

6. simplify 2/3a . 2/a^2
a. 4/3a^2; where a=0
b. x-6; where a=0
c. 4/3a^3; where a=0
d. 4/3a^2

7. multiply x-5/4x+8 times (12x^2+32x+8)
a. (3x+2)/ 4(x-5)
b. (x-5) (3x+2)/ 4
c. (x-5) (3x+2)
d. (x-5) (12x+8)

8. divide. (x^2-16/x-1) / x+4
a. x-4/x-1
b. x+4/ x-1
c. (x+4) (x-3)/ x-1
d. x-4/x+1

9. divide. x^2+2x+1/x-2 / x^2-1/ x^2-4
a. (x+1) (x+2)/ x-1
b. (x-1) (x-2)/ x+1
c. (x+1) (x-2)/ x+1
d. (x-1) (x+2)/ x-1

10. divide (24w^10 + 8w^12) divide by (4x^4)
a. 6w^6+2x^8
b. 6w^6 + 8w^12
c. 24x^10+2w^8
d. 6w^10 + 2w^12

11. divide (-6m^9-6m^8-16m^6) divided by (2m^3)
a. -3m^9-3m^8-8m^6
b. -3m^6-6m^8-16m^3
c. -3m^6-3m^5-8m^3
d. -3m^6-3m^5-16m^3

12. simplify into one fraction -4x/x+7 - 8/x-7
a. -4x+8/x+7
b. x-8/ x
c. -4x-8/x+7
d. x+7/-4x

13. simplify into one fraction 3/x-3 - 5/x-2
a. -2x+9/ (x-3) (x-2)
b. -2x/ (x-3) (x-2)
c. 2x+9/ (x-3) (x-2)
d. 2x+9 / ( x-3) (x-2)

14. simplify into one fraction 9/x-1 - 5/ x+4
a. 4x+5/ (x-1) (x+4)
b. 4x+41/ (x-1) (x+4)
c. 4/ (x-1) (x+4)
d. 14/ (x-1) (x+4)

15. simplify into one fraction -3/x+2 - -5/x+3
a. -8x-19/ (x+2) (x+3)
b. -8/ (x+2) (x+3)
c. 2/ (x+2) (x+3)
d. 2x+1/ (x+2) (x+3)

16. solve 4/x + 5/x = -3
a. x=27
b. x=3
c. x=-3
d. x=-27

17. solve 1/3x-6 - 5/x-2 = 12
a. x= 34/9
b. x= -29/18
c. x= -34/9
d. x=29/18

18. what is the solution of the equation ? 1/x - 6/x^2 = -12
a. x=3/4 or x= -2/3
b. x= 3/4 or x=2/3
c. x= -3/4 or x= 2/3
d. x= -3/4 or x= -2/3

19. Dorothy and Rosanne are baking cookies for party, working alone Rosanne can finish the cookies in 6 hours, Dorothy can finished them in eight hours working alone. How long would it take for them to bake the cookies if they were working together ?
a. 7.00 hours
b. 3.43 hours
c. 0.29 hours
d. 14.00 hours

20 . The pressure, p , for gas varies inversely with it's volume, v ,. pressure is measured in units of pa. Suppose that a particular amount of gas as initially at a pressure of 104 pa at a volume of 108 L. If the volume is expanded to 432 L, what will the new pressure be ?
a. 26 pa
b. 27 pa
c. 416 pa
d. 1728 pa

21. do the data in that table represent a direct variation or an inverse variation?
x: 1,3,5,10
y: 4,12,20,40

a. direct variation y=4x
b. direct variation xy=1/4
c. inverse variation xy= 4
d. inverse variation xy=1/4

22. what are the excluded values of the function? y= 3/4x+64
a. x=0
b. x=-64
c. x=-16
d. x=-8

2 Answers

4 votes
Question 1

To find the width of the rectangle, we divide the area by the length

2x^(3)-29x+12÷
x+4
We use the method of long division to get the answer. The method is shown in the first diagram below

Answer:
2x^(2)-8x+3

Question 2:

(x)/(6x-x^(2) ) = (x)/(x(6-x)) = (1)/(6-x)

Question 3:

(-12 x^(4) )/(x^(4)+8 x^(5) )= (-12 x^(4) )/( x^(4)(1+8x))= (-12)/(1+8x)

Question 4:

(x+5)/(x^(2)+6x+5)= (x+5)/((x+1)(x+5))= (1)/(x+1)


Question 5:

\frac{x^(2)-3x-18} {x+3}= ((x-6)(x+3))/(x+3)= (x-6)/(1)=x-6

Question 6:

(2)/(3a)×
(2)/(a^(2))=
(4)/(3a^(3) ) where
a \\eq 0

Question 7: (Question is not written well)

(x-5)/(4x+8)×
(12x^(2)+32x+8)

(12 x^(3)-28 x^(2) -152x-40 )/(4x+8)
By performing long division we get an answer
3 x^(2) -x-36 with remainder of 248

Question 8:

( \frac{x^(2)-16} {x-1})÷
(x+4)

( ( x^(2)-16 )/(x-1))×
(1)/(x+4)

((x+4)(x-1))/(x-1)×
(1)/(x+4)
Cancelling out
x+4 we obtain
(x+1)/(x-1)

Question 9:

\frac{x^(2)+2x+1} {x-2}÷
(x^(2-1) )/(x^(2)-4 )

( x^(2)+2x+1 )/(x-2)×
(x^(2)-4 )/(x^(2)-1)
Factorise all the quadratic expression gives

((x+1)(x+1))/(x-2)×
((x-2)(x+2))/((x+1)(x-1))
Cancelling out
(x+1) and
(x-2) gives a simplest form

((x+1)(x+2))/(x-1)

Question 10:


(24 w^(10)+8w^(12) )/(4 x^(4) )= (24w^(10) )/(4 x^(4) ) + (8 w^(12) )/(4 x^(4) )
Cancelling out the constants of each fraction

(6w^(10) )/(x^(4) )+ (2w^(12) )/(x^(4))= (6w^(10)+2w^(12) )/( x^(4))

Question 11:


(-6m^(9)-6m^(8)-16m^(6) )/(2m^(3) ) = (-2m^(6)(3m^(3)-3m^(2)-8))/(2m^(3) )
Cancelling
2m^(3) gives us the simplified form

-m^(3)(3m^(3)-3m^(2)-8) = -3m^(6)+3m^(5)+8m^(3)

Question 12:


(-4x)/(x+7) - (8)/(x-7) = (-4x(x-7)-8(x+7))/((x+7)(x-7))

(-4 x^(2) +28x-8x-56)/((x+7)(X-7))= (-4 x^(2) +20x-56)/((x+7)(x-7))
Factorising the numerator expression

((-4x+28)(x-2))/((x+7)(x-7)) = (-4(x-7)(x-2))/((x+7)(x-7))
Cancelling out
x-7 gives the simplified form

(-4x+8)/(x-7)

Question 13:


(3)/(x-3) - (5)/(x-2)= (x3(x-2)-5(x-2))/(y(x-3)(x-2))

(3x-6-5x+15)/((x-3)(x-2))= (-2x+9)/((x-3)(x-2))

Question 14:


(9)/(x-1)- (5)/(x+4)= (9(x+4)-5(x-1))/((x-1)(x+4))
(9x+36-5x+5)/((x-1)(x+4))= (4x+41)/((x-1)(x+4))

Question 15:


(-3)/(x+2)- ((-5))/(x+3)= (-3(x+3)-(-5)(x+2))/((x+2)(x+3))

(-3x-9+5x+10)/((x+2)(x+3))= (2x+1)/((x+2)(x+3))

Question 16:


(4)/(x)+ (5)/(x)=-3

(9)/(x)=-3

x=-3

Question 17:


(1)/(3x-6)- (5)/(x-2)=12

((x-2)-5(3x-6))/((3x-6)(x-2)) = (x-2-15x+30)/((3x-6)(x-2))= (-14x+28)/((3x-6)(x-2))

Question 18


1. The width w of a rectangular swimming pool is x+4. The area A of the pool is 2x-example-1
User Havi
by
7.4k points
4 votes

** CORRECTIONS: Q1: It's 2x^3-29x+12; Q2,3,4,5,6: All conditions have ≠ symbol; Q7: it's (12x^2+32x+16); Q10: Option D should be divided by x^4; **

(1) Given:

Width = W = x+4

Area = A =
2x^3-29x+12

Length = L = ?

Since the pool is rectangular in shape:

area = width * length

A = W * L

Substitute:


2x^3-29x+12 = (x+4) * L \\ L =(2x^3-29x+12)/(x+4)

The long division is attached with the answer (below in the picture). Hence the correct answer is
2x^2-8x+3 (Option C)

(2) Given expression:


(x)/(6x-x^2) \\ (x)/(x(6-x)) \\ (1)/(6-x)

Where x ≠ 6. (Option B)

(3) Given :


(-12 x^(4) )/(x^(4)+8 x^(5) )

Now simplify:


(-12 x^(4) )/(x^(4)+8 x^(5) )= (-12 x^(4) )/( x^(4)(1+8x))= (-12)/(1+8x)

Where x ≠ -1/8 (Option A)

(4) Given:


(x+5)/(x^(2)+6x+5)

Simplify:


(x+5)/(x^(2)+6x+5)= (x+5)/((x+1)(x+5))= (1)/(x+1)

Where x ≠ -1 (Option A)

(5) Given:


\frac{x^(2)-3x-18} {x+3}

Simplify:


\frac{x^(2)-3x-18} {x+3}= ((x-6)(x+3))/(x+3)= (x-6)/(1)=x-6 where x≠6 (Option C)

(6) Given:


(2)/(3a) .(2)/(a^2)

Simplify:


(4)/(3a^(1+2)) = (4)/(3a^(3))

Where a ≠ 0 (Option C)

(7) Mathematically:


(x-5)/(4x + 8) * (12x^2+32x+16)

Simplify:


(x-5)/(4x + 8) * (12x^2+32x+16) \\ (x-5)/(4(x + 2)) * 12x^2 + (x-5)/(4(x + 2)) * 32x + (x-5)/(4(x + 2)) * 16 \\ (x-5)/((x + 2)) * 3x^2 + (x-5)/((x + 2)) * 8x + (x-5)/((x + 2)) * 4 \\ ((x-5)(3x^2 + 8x + 4x) )/((x+2)) \\ ((x-5)(3x^2 -6x - 2x + 4x) )/((x+2)) \\ ((x-5)(3x+2)(x+2) )/((x+2)) \\ =(x-5)(3x+2)

(Option C)

(8) Simplify:


\frac{( \frac{x^(2)-16} {x-1}) }{(x+4)} \\ \frac{( \frac{(x+4)(x-4)} {x-1}) }{(x+4)} \\ = \frac{(x-4)} {(x-1)}

(Option A)

(9) Simplify:


( (x^2+2x+1)/(x-2))/((x^2-1)/(x^2-4 )) \\ ( ((x+1)(x+1))/(x-2))/(((x+1)(x-1))/((x-2)(x+2) )) \\ ( ((x+1))/(1))/(((x-1))/((x+2) )) \\ = ((x+1)(x+2))/((x-1))

(Option A)

(10) Given:


(24 w^(10)+8w^(12) )/(4 x^(4) )

Simplify:


(24 w^(10)+8w^(12) )/(4 x^(4) )= (24w^(10) )/(4 x^(4) ) + (8 w^(12) )/(4 x^(4) ) = (6w^(10) )/(x^(4) )+ (2w^(12) )/(x^(4))= (6w^(10)+2w^(12) )/( x^(4))

(Option D)

(11) Given:


(-6m^(9)-6m^(8)-16m^(6) )/(2m^(3) )

Simplify:


(-6m^(9)-6m^(8)-16m^(6) )/(2m^(3) ) = (-2m^(6)(3m^(3)+3m^(2)+8))/(2m^(3) ) = -m^(3)(3m^(3)+3m^(2)+8)\\ = -3m^(6)-3m^(5)-8m^(3)

(Option C)

(12) Simplify:


(-4x)/(x+7) - (8)/(x-7) = (-4x(x-7)-8(x+7))/((x+7)(x-7)) \\ (-4 x^(2) +28x-8x-56)/((x+7)(X-7))= (-4 x^(2) +20x-56)/((x+7)(x-7)) \\ ((-4x+28)(x-2))/((x+7)(x-7)) = (-4(x-7)(x-2))/((x+7)(x-7)) = (-4x+8)/(x+7)

(Option A)

(13) Simplify:


(3)/(x-3) - (5)/(x-2) \\ = (x3(x-2)-5(x-2))/(y(x-3)(x-2)) \\ (3x-6-5x+15)/((x-3)(x-2)) \\= (-2x+9)/((x-3)(x-2))

(Option A)

(14) Simplify:


(9)/(x-1)- (5)/(x+4)= (9(x+4)-5(x-1))/((x-1)(x+4)) \\ (9x+36-5x+5)/((x-1)(x+4))= (4x+41)/((x-1)(x+4))

(Option B)

(15) Simplify:


(-3)/(x+2)- ((-5))/(x+3)\\= (-3(x+3)-(-5)(x+2))/((x+2)(x+3)) \\ = (-3x-9+5x+10)/((x+2)(x+3))\\= (2x+1)/((x+2)(x+3))

(Option D)

(16) Given:

4/x + 5/x = -3

Simplify:

(4+5)/x = -3

-3x = 9

x = -3 (Option C)

(17) Simplify:


(1)/(3x-6) - (5)/(x-2) = 12 \\ ((x-2)-5(3x-6))/((3x-6)(x-2)) = 12 \\ ((x-2)-5*3(x-2))/((3x-6)(x-2)) = 12 \\ (-14(x-2))/((3x-6)(x-2)) = 12 \\ (-14)/((3x-6)) = 12\\ -14 = 12(3x-6) \\ -14 = 36x - 72 \\ 36x = 58 \\ x=(29)/(18)

(Option D)

(18) Simplify:


(1)/(x) - (6)/(x^2) = -12 \\ (x - 6)/(x^2) = -12 \\ x-6 = -12x^2 \\ 12x^2 + x - 6 = 0 \\ 12x^2 + 9x - 8x - 6 = 0 \\ 3x(4x + 3) -2(4x + 3) =0 \\ (3x-2)(4x+3) =0 \\ => x =(2)/(3) , x =(-3)/(4)

(Option C)

(19) Dorothy's rate (alone) will be:


R_D =(1)/(6)

Rosanne's rate (alone) will be:


R_R =(1)/(8)

If both work together, add both the rates:


R_T = R_D + R_R = (1)/(6) + (1)/(8) = (7)/(24) (in 1/hours)

To find the hours, flip the rate:


(24)/(7) = 3.43 hours (Option B)

(20) As pressure (p) is inversely proportional with volume (v):

p = k/v (where k is constant of proportionality)

k = pv

Find constant using initial values:

k = (104)(108)

k = 11232

Now new pressure is:

p = k/v = 11232/432 = 26 Pa (Option A)

(21)

x: 1,3,5,10

y: 4,12,20,40

Direct variation is the value of y increases with x. So,

y = 4x

If x = 1,y=4(1)=4

If x = 3,y=4(3)=12

If x = 5,y=20

If x = 10,y=40 (Option A)

(22)
(3)/(4x+64)

If x=-16,4(-16) + 64 = 0;denominator will become zero,which means that there will be discontinuity at x = -16. Hence, x=-16 (Option C) should be excluded.

1. The width w of a rectangular swimming pool is x+4. The area A of the pool is 2x-example-1
User Gsiener
by
7.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories