165k views
5 votes
ΔABC is a right triangle in which  is a right angle, AB = 1, AC = 2, and BC = .

cos C × sin A =

User TehAnswer
by
7.2k points

2 Answers

2 votes

Answer:Cos C × Sin A =
(3)/(4) and BC = √3.

Explanation:

Given : A right triangle ABC where AB = 1, AC = 2 .

To Find : BC and cos C × sin A .

Solution :We have ΔABC is a right triangle, AB = 1, AC = 2.

As it is a right triangle, thus by Pythagoras theorem

AC² = AB² +BC².

2² = 1² + BC²

4 = 1 + BC²

BC = √3.

Now ,

Sin A =
(side\ opposite\ of\ angle\ A)/(Hypontnuse)

Sin A =
(BC)/(AC).

Sin A =
(√3)/(2).

Cos C =
(side\ opposite\ of\ angle\ C)/(Hypontnuse).

Cos C =
(BC)/(AC).

Cos C = =
(√3)/(2).

Cos C × Sin A


(√3)/(2) ×
(√3)/(2).


(3)/(4).

Therefore, Cos C × Sin A =
(3)/(4) and BC = √3.

User Mlynn
by
7.4k points
1 vote

Answer:
cos\ C*\ sin\ A=(√(3) )/(2)*\ (√(3) )/(2)=(3)/(4)


Explanation:

Given a right triangle ABC where AB = 1, AC = 2

As it is a right triangle, thus by Pythagoras theorem


AC^2=AB^2+BC^2\\\Rightarrow2^2=1^2+BC^2\\\Rightarrow4=1+BC^2\\\Rightarrow\ BC^2=4-1=3\\\Rightarrow\ BC=√(3)

Now ,

as
sin A=(sides\ opposite\ to\ angle\ A )/(hypotenuse)


sin\ A=(BC)/(AC)=(√(3) )/(2)

and


cos C=(side\ adjacent\ to\ angle\ C)/(hypotenuse)


cos\ C=(BC)/(AC)=(√(3) )/(2)


Therefore,


cos\ C*\ sin\ A=(√(3) )/(2)*\ (√(3) )/(2)=(3)/(4)

ΔABC is a right triangle in which  is a right angle, AB = 1, AC = 2, and BC = . cos-example-1
User Atreys
by
7.6k points