61.5k views
5 votes
Use​ Gauss's approach to find the following sums​ a. 1+2+3+4..+999 b. 1+3+5..+997

1 Answer

2 votes

S=1+2+3+4+\cdots+996+997+998+999

S=999+998+997+996+\cdots+4+3+2+1

\implies 2S=(1+999)+(2+998)+\cdots+(998+2)+(999+1)

Note that we're adding 999 terms in
S, so
2S is summing together 999 pairs of numbers that add to 1000:


2S=1000+1000+\cdots+1000+1000

2S=999(1000)

S=\frac{999(1000)}2=999(500)=499500


T=1+3+5+\cdots+993+995+997

T=997+995+993+\cdots+5+3+1

\implies 2T=(1+997)+(3+995)+\cdots+(995+3)+(997+1)

This time,
T adds up 499 numbers - we can determine this by finding the value of
n such that
2n-1=997 - that each add up to 998, so


2T=998+998+\cdots+998+998

2T=499(998)

T=\frac{499(998)}2=499(499)=249001
User MTroy
by
6.7k points