Answer:

General Formulas and Concepts:
Pre-Calculus
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
![\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)](https://img.qammunity.org/2018/formulas/mathematics/high-school/s293bflxm18bvcg1l3en3cuunq0lisacx0.png)
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
- [Indefinite Integrals] Integration Constant C
Integration Rule [Reverse Power Rule]:

Integration Rule [Fundamental Theorem of Calculus 1]:

Integration Property [Multiplied Constant]:

U-Substitution
Explanation:
Step 1: Define
Identify

Step 2: Integrate Pt. 1
Set variables for u-substitution.
- Set u:

- [u] Differentiate [Basic Power Rule, Multiplied Constant]:

Step 3: Integrate Pt. 2
- [Integral] Rewrite:

- [Integral] U-Substitution:

- [Integral] Trigonometric Integration:
![\displaystyle \int\limits^1_0 {xsin(\pi x^2)} \, dx = (1)/(2 \pi)[-cos(u)] \bigg| \limits^(\pi)_0](https://img.qammunity.org/2018/formulas/mathematics/high-school/1c4s8hykfjvofackwzwzyb1lbjmqoonf6a.png)
- Evaluate [Integration Rule - Fundamental Theorem of Calculus]:

- Simplify:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration