210k views
2 votes
How to you solve this indefinite integral from 0 to 1? ∫(xsin(πx^2))dx

User Tim Jahn
by
8.0k points

1 Answer

2 votes

Answer:


\displaystyle \int\limits^1_0 {xsin(\pi x^2)} \, dx = (1)/(\pi)

General Formulas and Concepts:

Pre-Calculus

  • Unit Circle

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • [Indefinite Integrals] Integration Constant C

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Rule [Fundamental Theorem of Calculus 1]:
\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Explanation:

Step 1: Define

Identify


\displaystyle \int\limits^1_0 {xsin(\pi x^2)} \, dx

Step 2: Integrate Pt. 1

Set variables for u-substitution.

  1. Set u:
    \displaystyle u = \pi x^2
  2. [u] Differentiate [Basic Power Rule, Multiplied Constant]:
    \displaystyle du = 2\pi x \ dx

Step 3: Integrate Pt. 2

  1. [Integral] Rewrite:
    \displaystyle \int\limits^1_0 {xsin(\pi x^2)} \, dx = (1)/(2 \pi) \int\limits^1_0 {2\pi xsin(\pi x^2)} \, dx
  2. [Integral] U-Substitution:
    \displaystyle \int\limits^1_0 {xsin(\pi x^2)} \, dx = (1)/(2 \pi) \int\limits^(\pi)_0 {sin(u)} \, du
  3. [Integral] Trigonometric Integration:
    \displaystyle \int\limits^1_0 {xsin(\pi x^2)} \, dx = (1)/(2 \pi)[-cos(u)] \bigg| \limits^(\pi)_0
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus]:
    \displaystyle \int\limits^1_0 {xsin(\pi x^2)} \, dx = (1)/(2 \pi)(2)
  5. Simplify:
    \displaystyle \int\limits^1_0 {xsin(\pi x^2)} \, dx = (1)/(\pi)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

User Azriel
by
8.2k points