84.9k views
4 votes
For the function given state the period f(t) =6sin(3t-pi/6)-1

1 Answer

7 votes

\bf \qquad \qquad \qquad \qquad \textit{function transformations} \\ \quad \\ % function transformations for trigonometric functions \begin{array}{rllll} % left side templates f(x)=&{{ A}}sin({{ B}}x+{{ C}})+{{ D}} \\\\ f(x)=&{{ A}}cos({{ B}}x+{{ C}})+{{ D}}\\\\ f(x)=&{{ A}}tan({{ B}}x+{{ C}})+{{ D}} \end{array}


\bf \begin{array}{llll} % right side info \bullet \textit{ stretches or shrinks}\\ \quad \textit{horizontally by amplitude } |{{ A}}|\\\\ \bullet \textit{ horizontal shift by }\frac{{{ C}}}{{{ B}}}\\ \qquad if\ \frac{{{ C}}}{{{ B}}}\textit{ is negative, to the right}\\\\ \qquad if\ \frac{{{ C}}}{{{ B}}}\textit{ is positive, to the left}\\\\ \end{array}


\bf \begin{array}{llll} \bullet \textit{vertical shift by }{{ D}}\\ \qquad if\ {{ D}}\textit{ is negative, downwards}\\\\ \qquad if\ {{ D}}\textit{ is positive, upwards}\\\\ \bullet \textit{function period or frequency}\\ \qquad \frac{2\pi }{{{ B}}}\ for\ cos(\theta),\ sin(\theta),\ sec(\theta),\ csc(\theta)\\\\ \qquad \frac{\pi }{{{ B}}}\ for\ tan(\theta),\ cot(\theta) \end{array}


now, with that template in mind, let's take a peek at yours


\bf \begin{array}{lllcclll} f(t)=&6sin(&3t&-(\pi )/(6))&-1\\ &\uparrow &\uparrow &\uparrow &\uparrow \\ &A&B&C&D \end{array}\\\\ -----------------------------\\\\ period\qquad \cfrac{2\pi }{B}\iff\cfrac{2\pi }{3}
User Saphire
by
6.9k points