23.8k views
4 votes
Find all solutions in the interval [0,2pi). sec^2x-2=tan^2x

User Johnnerz
by
8.0k points

1 Answer

3 votes

\bf tan(\theta)=\cfrac{sin(\theta)}{cos(\theta)}\qquad \qquad sec(\theta)=\cfrac{1}{cos(\theta)} \\\\\\ sin^2(\theta)+cos^2(\theta)=1\implies cos^2(\theta)=1-sin^2(\theta)\\\\ -----------------------------\\\\ sec^2(x)-2=tan^2(x)\qquad [0,2\pi ) \\\\\\ \cfrac{1^2}{cos^2(x)}-2=\cfrac{sin^2(x)}{cos^2(x)}\implies \cfrac{1}{cos^2(x)}-2-\cfrac{sin^2(x)}{cos^2(x)}=0


\bf \cfrac{1-2cos^2(x)-sin^2(x)}{cos^2(x)}=0\implies 1-2\underline{cos^2(x)}-sin^2(x) \\\\\\ 1-2\underline{[1-sin^2(x)]}-sin^2(x)=0\implies 1-2+2sin^2(x)-sin^2(x)=0 \\\\\\ -1+sin^2(x)=0\implies sin^2(x)=1\implies sin(x)=\pm√(1) \\\\\\ sin(x)=\pm 1\implies \measuredangle x=sin^(-1)(\pm1)\implies \measuredangle x= \begin{cases} (\pi )/(2)\\\\ (3\pi )/(2) \end{cases}
User Hassaan Tauqir
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories