Given:
One side = 8x-10
Another side = 2(x+1)
To find:
The perimeter of the pentagon.
Solution:
We know that, all five sides of a regular pentagon are equal.
![8x-10=2(x+1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/un0ikhjboiv3zx4f9oixvjjdpc2jf709rv.png)
![8x-10=2x+2](https://img.qammunity.org/2022/formulas/mathematics/high-school/awjzmbzyy4y5gs514043vf6eu4whgc8xfz.png)
![8x-2x=10+2](https://img.qammunity.org/2022/formulas/mathematics/high-school/8oi779enbkzlbcgew0eshc0z76a5bwstlp.png)
![6x=12](https://img.qammunity.org/2022/formulas/history/college/k1hasb6u0u6hf8x2yfqqk9gj1y801illzc.png)
Divide both sides by6.
![x=2](https://img.qammunity.org/2022/formulas/mathematics/high-school/44reazwucximx4d1uqoqmyb10x77od7ulw.png)
Now, the length of each side of the pentagon is
![Side=8(2)-10](https://img.qammunity.org/2022/formulas/mathematics/high-school/uu1lg6sit8diko2gbvnewc4xpqlw9q41jd.png)
![Side=16-10](https://img.qammunity.org/2022/formulas/mathematics/high-school/el9e8304uxjxpi8t9w5ybbtha7zf2satoy.png)
![Side=6](https://img.qammunity.org/2022/formulas/mathematics/high-school/3lwcczc5pindlhyb14x4zwr44vnklyfa11.png)
We know that, perimeter of a regular pentagon is
![P=5a](https://img.qammunity.org/2022/formulas/mathematics/high-school/wpvbu9j8vb1tg4y2aesdne7n28kfsiahfj.png)
Where, a is the side length.
![P=5(6)](https://img.qammunity.org/2022/formulas/mathematics/high-school/rv76e239klr2noxewmllqk21rsbqkiuayw.png)
![P=30](https://img.qammunity.org/2022/formulas/mathematics/high-school/ahf4mgwmf67noa3t7z4l5vge2dt0rdhxxq.png)
Therefore, the perimeter of the regular pentagon is 30 units.