166k views
2 votes
Which of the following represents the zeros of f(x) = x3 − 12x2 + 47x − 60

User KlynkC
by
5.9k points

2 Answers

4 votes
f(x) = x • 3 • 2 + 47x - 60
fx =3x - 24x + 47x - 60
fx = 26x - 60
x = - 60/f - 26
User Farzaneh Talebi
by
6.2k points
4 votes

Answer:
x=3,\:x=4,\:x=5.


Step-by-step explanation: Given polynomial function
f(x) = x^3-12x^2+47x-60.


\mathrm{Use\:the\:rational\:root\:theorem}\\


p=60,\:\quad q=1


\mathrm{The\:dividers\:of\:}p:\quad 1,\:2,\:3,\:4,\:5,\:6,\:10,\:12,\:15,\:20,\:30,\:60,\:\quad \mathrm{The\:dividers\:of\:}q:\quad 1


\mathrm{Therefore,\:check\:the\:following\:rational\:numbers:\quad }\pm (1,\:2,\:3,\:4,\:5,\:6,\:10,\:12,\:15,\:20,\:30,\:60)/(1)


(3)/(1)\mathrm{\:is\:a\:root\:of\:the\:expression,\:so\:factor\:out\:}x-3


(x^3-12x^2+47x-60)/(x-3)=x^2-9x+20 \ \  By \ long \ division.


\mathrm{Factor}\:x^2-9x+20:\quad \left(x-4\right)\left(x-5\right)

Therefore,


x^3-12x^2+47x-60=\left(x-3\right)\left(x-4\right)\left(x-5\right)


\mathrm{Solve\:}\:x-3=0:\quad x=3


\mathrm{Solve\:}\:x-4=0:\quad x=4


\mathrm{Solve\:}\:x-5=0:\quad x=5


\mathrm{The\:final\:solutions\:to\:the\:equation\:are:}


x=3,\:x=4,\:x=5

User John Hargrove
by
6.0k points