Answer:
Hence, the standard form of the given expression is:
![[2(\cos 15+i\sin 15)]^3=4√(2)+4√(2)i](https://img.qammunity.org/2018/formulas/mathematics/high-school/nnl2oodzggou0lf0ju965dngy40st0tgwe.png)
Explanation:
We have to represent the expression:
in the standard form:

Now, this expression could also be written as:
![[2(\cos 15+i\sin 15)]^3=2^3(\cos 15+i\sin 15)^3](https://img.qammunity.org/2018/formulas/mathematics/high-school/zhmzlx8ow29is27cdnk59h2of67k812nd1.png)
i.e.
![[2(\cos 15+i\sin 15)]^3=8(\cos 15+i\sin 15)^3](https://img.qammunity.org/2018/formulas/mathematics/high-school/n9fdz1p7j205f6hh2ce4miuhr3189luz1i.png)
Now we will use the De Movier's Theorem that:

Hence, we have:
![[2(\cos 15+i\sin 15)]^3=8(\cos (15* 3)+i\sin (15* 3))](https://img.qammunity.org/2018/formulas/mathematics/high-school/cb1rmgx2w62ivwqou0zkwib02mje0kbz6y.png)
i.e.
![[2(\cos 15+i\sin 15)]^3=8[\cos 45+i\sin 45]](https://img.qammunity.org/2018/formulas/mathematics/high-school/mjl7qki60c1zjluxvyl1a2q24cgdanz7l0.png)
i.e.
![[2(\cos 15+i\sin 15)]^3=8[(1)/(√(2))+i(1)/(√(2))]](https://img.qammunity.org/2018/formulas/mathematics/high-school/q6spofeeffvf93fix6ax3aisgbrr86fubz.png)
i.e.
![[2(\cos 15+i\sin 15)]^3=(8)/(√(2))+i(8)/(√(2))](https://img.qammunity.org/2018/formulas/mathematics/high-school/qwldjiwi7igboukvu1434w9uuyui62zfia.png)
i.e.
![[2(\cos 15+i\sin 15)]^3=4√(2)+4√(2)i](https://img.qammunity.org/2018/formulas/mathematics/high-school/nnl2oodzggou0lf0ju965dngy40st0tgwe.png)