202k views
2 votes
Find cos θ if sin θ = -(5/13) and tan θ > 0

2 Answers

3 votes
Remember:

sin²x + cos²x = 1

(-5/13)² + cos²θ = 1

(25/169) + cos²θ = 1

cos²
θ = 1 - (25/169)

cos²
θ = (144/169)

tan
θ > 0 ⇒ cosθ = negative

cos
θ = -√(144/169)

cosθ = -(12/13)
User Raj Joshi
by
7.3k points
3 votes

Answer:


cos\theta =-(12)/(13)

Explanation:


tan\theta =(sin \theta)/(cos \theta)

If tan θ > 0 and sin θ < 0 then cos θ <0

We have sin²θ + cos²θ = 1

That is


\left ( (-5)/(13) \right )^2+cos^2\theta =1\\\\cos^2\theta =1-(25)/(169)=(144)/(169)\\\\cos\theta =-(12)/(13)

User Traday
by
7.7k points