79.1k views
3 votes
Find the inverse place transform

Find the inverse place transform-example-1

1 Answer

4 votes
As you mentioned in your other question, I don't think this needs to be done with the convolution relation of the transform.

Note that you can rewrite the transform as


(7s+66-(9(s+5))/((s+5)^2+64))/(s^2+10s+74)

=(7(s+5))/((s+5)^2+49)+(31)/((s+5)^2+49)-(9(s+5))/(((s^2+49)(s^2+64))

=7(s+5)/((s+5)^2+7^2)+\frac{31}7\frac7{(s+5)^2+7^2}+\frac35(s+5)/((s+5)^2+8^2)-\frac35(s+5)/((s+5)^2+7^2)

Now, recall the following transforms:


\mathcal L_s\{\cos at\}=\frac s{s^2+a^2}

\mathcal L_s\{\sin at\}=\frac a{s^2+a^2}

\mathcal L_s\{e^(ct)f(t)\}=F(s-c)

With
c=-5, you can see that


\mathcal L_s\{f(t)\}=7(s+5)/((s+5)^2+7^2)+\frac{31}7\frac7{(s+5)^2+7^2}+\frac35(s+5)/((s+5)^2+8^2)-\frac35(s+5)/((s+5)^2+7^2)

\implies\mathcal L_s\{e^(-5t)f(t)\}=7\frac s{s^2+7^2}+\frac{31}7\frac7{s^2+7^2}+\frac35\frac s{s^2+8^2}-\frac35\frac s{s^2+7^2}

Taking the inverse transform of both sides gives


e^(-5t)f(t)=7\cos7t+\frac{31}7\sin7t+\frac35\cos8t-\frac35\cos7t

\implies f(t)=e^(5t)\left(\frac{32}5\cos7t+\frac35\cos8t+\frac{31}7\sin7t\right)
User Rachel Shallit
by
8.9k points

No related questions found