79.1k views
3 votes
Find the inverse place transform

Find the inverse place transform-example-1

1 Answer

4 votes
As you mentioned in your other question, I don't think this needs to be done with the convolution relation of the transform.

Note that you can rewrite the transform as


(7s+66-(9(s+5))/((s+5)^2+64))/(s^2+10s+74)

=(7(s+5))/((s+5)^2+49)+(31)/((s+5)^2+49)-(9(s+5))/(((s^2+49)(s^2+64))

=7(s+5)/((s+5)^2+7^2)+\frac{31}7\frac7{(s+5)^2+7^2}+\frac35(s+5)/((s+5)^2+8^2)-\frac35(s+5)/((s+5)^2+7^2)

Now, recall the following transforms:


\mathcal L_s\{\cos at\}=\frac s{s^2+a^2}

\mathcal L_s\{\sin at\}=\frac a{s^2+a^2}

\mathcal L_s\{e^(ct)f(t)\}=F(s-c)

With
c=-5, you can see that


\mathcal L_s\{f(t)\}=7(s+5)/((s+5)^2+7^2)+\frac{31}7\frac7{(s+5)^2+7^2}+\frac35(s+5)/((s+5)^2+8^2)-\frac35(s+5)/((s+5)^2+7^2)

\implies\mathcal L_s\{e^(-5t)f(t)\}=7\frac s{s^2+7^2}+\frac{31}7\frac7{s^2+7^2}+\frac35\frac s{s^2+8^2}-\frac35\frac s{s^2+7^2}

Taking the inverse transform of both sides gives


e^(-5t)f(t)=7\cos7t+\frac{31}7\sin7t+\frac35\cos8t-\frac35\cos7t

\implies f(t)=e^(5t)\left(\frac{32}5\cos7t+\frac35\cos8t+\frac{31}7\sin7t\right)
User Rachel Shallit
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories