158k views
1 vote
(x+y)^(m+n) = x^m.y^n find dy/dx without using log

User Glebreutov
by
8.4k points

1 Answer

3 votes

(x+y)^(m+n)=x^my^n

(\mathrm d)/(\mathrm dx)\left[(x+y)^(m+n)\right]=(\mathrm d)/(\mathrm dx)\left[x^my^n\right]

By the power/chain/product rules,


(m+n)(x+y)^(m+n-1)(\mathrm d)/(\mathrm dx)[x+y]=(\mathrm d)/(\mathrm dx)\left[x^m\right]y^n+x^m(\mathrm d)/(\mathrm dx)\left[y^n\right]

(m+n)(x+y)^(m+n-1)\left(1+(\mathrm dy)/(\mathrm dx)\right)=mx^(m-1)y^n+nx^my^(n-1)(\mathrm dy)/(\mathrm dx)

\left((m+n)(x+y)^(m+n-1)-nx^my^(n-1)\right)(\mathrm dy)/(\mathrm dx)=mx^(m-1)y^n-(m+n)(x+y)^(m+n-1)

(\mathrm dy)/(\mathrm dx)=(mx^(m-1)y^n-(m+n)(x+y)^(m+n-1))/((m+n)(x+y)^(m+n-1)-nx^my^(n-1))
User Astri
by
8.2k points

No related questions found