158k views
1 vote
(x+y)^(m+n) = x^m.y^n find dy/dx without using log

User Glebreutov
by
8.4k points

1 Answer

3 votes

(x+y)^(m+n)=x^my^n

(\mathrm d)/(\mathrm dx)\left[(x+y)^(m+n)\right]=(\mathrm d)/(\mathrm dx)\left[x^my^n\right]

By the power/chain/product rules,


(m+n)(x+y)^(m+n-1)(\mathrm d)/(\mathrm dx)[x+y]=(\mathrm d)/(\mathrm dx)\left[x^m\right]y^n+x^m(\mathrm d)/(\mathrm dx)\left[y^n\right]

(m+n)(x+y)^(m+n-1)\left(1+(\mathrm dy)/(\mathrm dx)\right)=mx^(m-1)y^n+nx^my^(n-1)(\mathrm dy)/(\mathrm dx)

\left((m+n)(x+y)^(m+n-1)-nx^my^(n-1)\right)(\mathrm dy)/(\mathrm dx)=mx^(m-1)y^n-(m+n)(x+y)^(m+n-1)

(\mathrm dy)/(\mathrm dx)=(mx^(m-1)y^n-(m+n)(x+y)^(m+n-1))/((m+n)(x+y)^(m+n-1)-nx^my^(n-1))
User Astri
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories