202k views
2 votes
Integrate f(x,y,z)=12xz over the region in the first octant above the parabolic cylinder z=y^2 and below the paraboloid z=8−2x^2−y^2.

1 Answer

4 votes
The intersection of the two surfaces occurs along the cylinder
x^2+y^2=4, so we have the
x- and
y-coordinates of the points in the bounded region contained within
0\le x\le2 and
0\le y\le2, while
y^2\le z\le8-2x^2-y^2.

The triple integral is then given by


\displaystyle\iiint_V12xz\,\mathrm dV=\int_(x=0)^(x=2)\int_(y=0)^(y=2)\int_(z=y^2)^(z=8-2x^2-y^2)12xz\,\mathrm dz\,\mathrm dy\,\mathrm dx

where
V denotes the bounded region in the first quadrant.

Integrating in Cartesian coordinates is easy enough to do in this order.


\displaystyle\int_(x=0)^(x=2)\int_(y=0)^(y=2)\int_(z=y^2)^(z=8-2x^2-y^2)12xz\,\mathrm dz\,\mathrm dy\,\mathrm dx

=\displaystyle24\int_(x=0)^(x=2)\int_(y=0)^(y=2)x(x^2-4)(x^2+y^2-4)\,\mathrm dy\,\mathrm dx

=\displaystyle\int_(x=0)^(x=2)(512x-320x^3+48x^5)\,\mathrm dx

=256
User Alexandre Belloni
by
8.8k points