225k views
1 vote
Find the angle between the given vectors to the nearest tenth of a degree.

u = <8, 4>, v = <9, -9>

2 Answers

4 votes

\bf \textit{angle between two vectors }\\ \quad \\ cos(\theta)=\cfrac{u \cdot v} \implies \cfrac{\text{dot product}}{\text{product of magnitudes}}\\ \quad \\\\ \theta = cos^(-1)\left(\cfrac{u \cdot v}v\right)\\\\ -----------------------------\\\\ \theta=cos^(-1)\left[ \cfrac{\ \textless \ 8,4\ \textgreater \ \quad \cdot \quad \ \textless \ 9,-9\ \textgreater \ }{(√(8^2+4^2))(√(9^2+(-9)^2))} \right]



\bf \theta=cos^(-1)\left[ \cfrac{(8\cdot 9)+(4\cdot -9)}{(√(64+16))(√(81+81))} \right]\implies \theta=cos^(-1)\left[ \cfrac{36}{(√(80))(√(162))} \right] \\\\\\ \theta=cos^(-1)\left[ \cfrac{36}{(√(80))(√(162))} \right]\implies \theta=cos^(-1)\left[ \cfrac{36}{√(12960)}\right] \\\\\\ \theta=cos^(-1)\left[ \cfrac{36}{36√(10)}\right]\implies \theta\approx 71.565^o
User Geekkoz
by
7.6k points
3 votes

Answer:


\theta=71.6^(\circ)

Explanation:

We are given that two vectors

u=<8,4> and v=<9,-9>

The given vectors can be write as


\vec{u}=8\hat{i}+4\hat{j}


\vec{v}=9\hat{i}-9\hat{j}

We have to find the angle between two given vectors

The formula to find out the angle between two vectors is given below


cos\theta=\frac{\vec{u}\cdot\vec{v}}{\mid\vec{u}\mid\cdot \mid\vec{v}\mid}

By applying this formula we have to find the angle between two vectors


\mid{\vec{u}\mid=√(8^2+4^2)=√(64+16)=√(80)=4\sqrt5


\mid\vec{v}\mid=√(9^2+(-9)^2)=√(81+81)=9\sqrt2


\vec{u}\cdot\vec{v}=(8\hat{i}+4\hat{j})\cdot(9\hat{i}-9\hat{j})=72-36=36

Using
\hat{i}\cdot\hat{i}=1,\hat{j}\cdot\hat{j}=1,\hat{k}\cdot\hat{k}=1

Substituting the values then we get


cos\theta=(36)/(4\sqrt5\cdot9\sqrt2)


cos\theta=(1)/(\sqrt10)=(1)/(3.16)


cos\theta=0.3164


\theta=cos^(-1)(0.3164)=71.55^(\circ)


\theta=71.6^(\circ)

Answer:
\theta=71.6^(\circ)

User Gliderman
by
9.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories