225k views
1 vote
Find the angle between the given vectors to the nearest tenth of a degree.

u = <8, 4>, v = <9, -9>

2 Answers

4 votes

\bf \textit{angle between two vectors }\\ \quad \\ cos(\theta)=\cfrac{u \cdot v} \implies \cfrac{\text{dot product}}{\text{product of magnitudes}}\\ \quad \\\\ \theta = cos^(-1)\left(\cfrac{u \cdot v}v\right)\\\\ -----------------------------\\\\ \theta=cos^(-1)\left[ \cfrac{\ \textless \ 8,4\ \textgreater \ \quad \cdot \quad \ \textless \ 9,-9\ \textgreater \ }{(√(8^2+4^2))(√(9^2+(-9)^2))} \right]



\bf \theta=cos^(-1)\left[ \cfrac{(8\cdot 9)+(4\cdot -9)}{(√(64+16))(√(81+81))} \right]\implies \theta=cos^(-1)\left[ \cfrac{36}{(√(80))(√(162))} \right] \\\\\\ \theta=cos^(-1)\left[ \cfrac{36}{(√(80))(√(162))} \right]\implies \theta=cos^(-1)\left[ \cfrac{36}{√(12960)}\right] \\\\\\ \theta=cos^(-1)\left[ \cfrac{36}{36√(10)}\right]\implies \theta\approx 71.565^o
User Geekkoz
by
7.6k points
3 votes

Answer:


\theta=71.6^(\circ)

Explanation:

We are given that two vectors

u=<8,4> and v=<9,-9>

The given vectors can be write as


\vec{u}=8\hat{i}+4\hat{j}


\vec{v}=9\hat{i}-9\hat{j}

We have to find the angle between two given vectors

The formula to find out the angle between two vectors is given below


cos\theta=\frac{\vec{u}\cdot\vec{v}}{\mid\vec{u}\mid\cdot \mid\vec{v}\mid}

By applying this formula we have to find the angle between two vectors


\mid{\vec{u}\mid=√(8^2+4^2)=√(64+16)=√(80)=4\sqrt5


\mid\vec{v}\mid=√(9^2+(-9)^2)=√(81+81)=9\sqrt2


\vec{u}\cdot\vec{v}=(8\hat{i}+4\hat{j})\cdot(9\hat{i}-9\hat{j})=72-36=36

Using
\hat{i}\cdot\hat{i}=1,\hat{j}\cdot\hat{j}=1,\hat{k}\cdot\hat{k}=1

Substituting the values then we get


cos\theta=(36)/(4\sqrt5\cdot9\sqrt2)


cos\theta=(1)/(\sqrt10)=(1)/(3.16)


cos\theta=0.3164


\theta=cos^(-1)(0.3164)=71.55^(\circ)


\theta=71.6^(\circ)

Answer:
\theta=71.6^(\circ)

User Gliderman
by
9.3k points