6.4k views
3 votes
Find the similarity ratio of a cube with volume 216 ft to a cube with volume 1000ft

User Ddelemeny
by
7.9k points

1 Answer

4 votes

\bf \qquad \qquad \textit{ratio relations} \\\\ \begin{array}{ccccllll} &Sides&Area&Volume\\ &-----&-----&-----\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3} \end{array} \\\\ -----------------------------\\\\


\bf \cfrac{\textit{similar shape}}{\textit{similar shape}}\qquad \cfrac{s}{s}=\cfrac{√(s^2)}{√(s^2)}=\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}}\\\\ -----------------------------\\\\ \cfrac{s^3}{s^3}\implies \cfrac{216}{1000}\implies \cfrac{\sqrt[3]{216}}{\sqrt[3]{1000}}\implies \cfrac{s}{s}\impliedby \textit{similarity ratio}

and simplify it away
User Jalani
by
7.9k points