104,980 views
44 votes
44 votes
Hi can you please help me out all the tabs for this question have the same options

Hi can you please help me out all the tabs for this question have the same options-example-1
User PrasadK
by
3.0k points

1 Answer

17 votes
17 votes

Given

To find the slope and length of each side.

Step-by-step explanation:

It is given that,


H(-3,-2),G(2,-4),F(4,1),E(-1,3)

Since,


Slope=(y_2-y_1)/(x_2-x_1)

Then,


\begin{gathered} Slope\text{ }of\text{ }HE=(3-(-2))/(-1-(-3)) \\ =(3+2)/(-1+3) \\ =(5)/(2) \end{gathered}
\begin{gathered} Slope\text{ }of\text{ }HG=(-4-(-2))/(2-(-3)) \\ =(-4+2)/(2+3) \\ =-(2)/(5) \end{gathered}

Also,


\begin{gathered} Slope\text{ }of\text{ }GF=(1-(-4))/(4-2) \\ =(1+4)/(2) \\ =(5)/(2) \end{gathered}

Since,


EF\perp GF

Then,


Slope\text{ }of\text{ }EF=-(2)/(5)

Also,


\begin{gathered} Length\text{ }of\text{ }HE=√((-3-(-1))^2+(3-(-2))^2) \\ =√((-3+1)^2+(3+2)^2) \\ =√((-2)^2+5^2) \\ =√(4+25) \\ =√(29) \end{gathered}

That implies,


\begin{gathered} Length\text{ }of\text{ }HE=Length\text{ }of\text{ }GF=√(29) \\ =5.39 \end{gathered}

Also,


\begin{gathered} Length\text{ }of\text{ }HG=√((-3-2)^2+(-2-(-4))^2) \\ =√((-5)^2+(-2+4)^2) \\ =√(25+4) \\ =√(29) \\ =5.39 \end{gathered}

Then,


Length\text{ }of\text{ }HG=Length\text{ }of\text{ }EF=5.39

Hence,


undefined

Hi can you please help me out all the tabs for this question have the same options-example-1
User Mepcotterell
by
3.2k points