387,840 views
6 votes
6 votes
e vectors to find the interior angles of the triangle given the following sets of vertices. Round your answer, in degrees, to two decimal places.(6, 1). (8, -4), (-9, -6)

e vectors to find the interior angles of the triangle given the following sets of-example-1
User Antiga
by
2.9k points

1 Answer

14 votes
14 votes

Answer:


\begin{gathered} Angle\text{ at \lparen-9, -6\rparen is }18.31^(\circ) \\ Angle\text{ at \lparen8, -4\rparen is }74.91^(\circ) \\ Angle\text{ at \lparen6, 1\rparen is }86.14^(\circ) \end{gathered}

Step-by-step explanation:

Given:


A(6,1),B(8,-4),C(-9,-6)

To find:

The interior angles of the triangle using vectors

If we draw this triangle using the given vertices, we'll have;

To find the angle at C(-9, -6) we need to get the vector name for vectors CA and CB as seen below;


\begin{gathered} CA<(6-(-9),1-(-6)>\rightarrow CA<15,7> \\ CB<8-(-9),-4-(-6)>\rightarrow CA<17,2> \end{gathered}

Then we'll the below formula to solve for the angle at C;


\begin{gathered} \cos\theta=\frac{CA\cdot CB}{Magnitude\text{ of CA and CB}} \\ \cos\theta=(255+14)/(√(15^2+7^2)*√(17^2+2^2)) \\ \cos\theta=(269)/(√(274)*√(293)) \\ \cos\theta=(27)/(283.34) \\ \cos\theta=0.9494 \\ \theta=\cos^(-1)(0.9494) \\ \theta=18.31^(\circ) \end{gathered}

So the angle at (-9, -6) is 18.31 degrees

To find the angle at B(8, -4) we need to get the vector name for vectors BA and BC as seen below;


\begin{gathered} BA<(6-8,1-(-4)>\rightarrow AB<-2,5> \\ BC<-9-8,-6-(-4)>\rightarrow CA<-17,-2> \end{gathered}

Then we'll the below formula to solve for the angle at B;


\begin{gathered} \cos\theta=\frac{BA\cdot BC}{Magnitude\text{ of BA and BC}} \\ \cos\theta=(34+(-10))/(√((-2)^2+5^2)*√((-17)^2+(-2)^2)) \\ \cos\theta=(24)/(√(29)*√(293)) \\ \cos\theta=(24)/(92.1792) \\ \cos\theta=0.2604 \\ \theta=\cos^(-1)(0.2604) \\ \theta=74.91^(\circ) \\ So\text{ the angle at \lparen8, -4\rparen is 74.91 degrees} \end{gathered}
\begin{gathered} We^(\prime)ll\text{ go ahead and determine the angle at A\lparen6, 1\rparen by first finding the vector names for } \\ vectors\text{ AB and AC;} \\ AB<8-6,-4-1>\rightarrow AB<2,-5> \\ AC<-9-6,-6-1>\rightarrow AC<-15,-7> \\ \cos(\theta)=\frac{AB\cdot AC}{Magn\imaginaryI tude\text{ of AB and AC}} \\ \cos\theta=\frac{-30+35}{\sqrt{2^2+(-5^()2)}*√((-15)^2+(-7)^2)} \\ \cos\theta=(6)/(√(29)*√(274)) \\ \cos\theta=(6)/(89.14) \\ \cos\theta=0.0673 \\ \theta=\cos^(-1)(0.0673) \\ \theta=86.1^(\circ) \\ So\text{ the angle at \lparen6, 1\rparen is 86.14 degrees} \end{gathered}
e vectors to find the interior angles of the triangle given the following sets of-example-1
User Lfa
by
3.2k points