47.6k views
3 votes
Find f'(x). anything helps!

also, bonus!
f(x)= e^(2x-1) + e^2

Find f'(x). anything helps! also, bonus! f(x)= e^(2x-1) + e^2-example-1
User Samuel Kim
by
7.6k points

1 Answer

6 votes

\bf f(x)=e^(-x)(e^(2x)+x^2)\iff f(x)=e^(-x)e^(2x)+e^(-x)x^2 \\\\\\ f(x)=e^(2x-x)+\cfrac{x^2}{e^x}\implies f(x)=e^x+\cfrac{x^2}{e^x}\\\\ -----------------------------\\\\ \cfrac{dy}{dx}\left[ \cfrac{x^2}{e^x} \right]\implies \cfrac{2xe^x-x^2e^x}{(e^x)^2}\implies \cfrac{xe^x(2-x)}{(e^x)(e^x)}\implies \cfrac{x(2-x)}{e^x}\\\\ -----------------------------\\\\ \cfrac{dy}{dx}=e^x+\cfrac{x(2-x)}{e^x}
User Kyle Ivey
by
8.1k points

No related questions found