77.2k views
1 vote
Solve the boundary value problem


x^(2) (d^(2)y)/(dx^(2)) - 15x (dy)/(dx) + 64y=0
where y(1)=0 and y(2)=1

1 Answer

4 votes
Another Cauchy-Euler ODE. Take
y=x^r and you get


r(r-1)x^r-16rx^r+64x^r=0

r^2-17r+64=0

\implies r=\frac{17}2\pm\frac{√(33)}2

so that the general solution is


y=C_1x^((17+√(33))/2)+C_2x^((17-√(33))/2)

With the given boundary conditions, you have


y(1)=0\implies 0=C_1+C_2

y(2)=1\implies 1=C_12^((17+√(33))/2)+C_22^((17-√(33))/2)

\implies C_1=(2^((-17+√(33))/2))/(2^(√(33))-1),C_2=-(2^((-17+√(33))/2))/(2^(√(33))-1)
User Echochamber
by
8.3k points