116k views
4 votes
Solve the initial value problem
x^(2) (d^(2)y)/(dx^(2)) -3x (dy)/(dx) + 20y=0


y(1)=2


y'(1)=-8

1 Answer

2 votes

x^2(\mathrm d^2y)/(\mathrm dx^2)-3x(\mathrm dy)/(\mathrm dx)+20y=0

This is your standard Euler-Cauchy ODE, which means we can substitute
y=x^r, then determine the possible values of
r to generate the set of fundamental solutions.


y=x^r

y'=rx^(r-1)

y''=r(r-1)x^(r-2)


x^2r(r-1)x^(r-2)-3xrx^(r-1)+20x^r=0

r(r-1)x^r-3rx^r+20x^r=0

r(r-1)-3r+20=0

r^2-4r+20=0\implies r=2\pm4i

For
r=2+4i, we get the solution


x^(2+4i)=x^2x^(4i)=x^2e^(4i\ln x)=x^2(\cos(4\ln x)+i\sin(4\ln x))

We'll get something almost identical with
r=2-4i - namely, two fundamental solutions
x^2\cos(4\ln x) and
x^2\sin(4\ln x), and so the general solution will be


y_c=C_1x^2\cos(4\ln x)+C_2x^2\sin(4\ln x)

Given
y(1)=2, we have


2=C_1

and from
y'(1)=-8 we get


{y_c}'=2x^2\cos(4\ln x)+C_2x^2\sin(4\ln x)

\implies-8=4+4C_2\implies C_2=-3

so that the particular solution is


y_c=2x^2\cos(4\ln x)-3x^2\sin(4\ln x)
User Alexey Golyshev
by
7.9k points