145k views
4 votes
Find the flux of F = x^3 i  + y^3 j  + z^3k through the closed surface bounding the solid region x^2 + y^2 ≤ 4, 0 ≤ z ≤ 4

1 Answer

4 votes
Use the divergence theorem. Let
R be the cylindrical region, then


\displaystyle\iint_(\partial R)\mathbf F\cdot\mathbf n\,\mathrm dS=\iiint_R\\abla\cdot\mathbf F\,\mathrm dV

(where
\mathbf n denotes the unit normal vector to
\partial R, but we don't need to worry about it now)

We have


\mathrm{div }\mathbf F=(\\abla\cdot\mathbf F)(x,y,z)=(\partial\mathbf F)/(\partial x)+(\partial\mathbf F)/(\partial y)+(\partial\mathbf F)/(\partial z)

\\abla\cdot\mathbf F=3x^2+3y^2+3z^2

For the solid
R with boundary
\partial R, we can set up the following volume integral in cylindrical coordinates for ease:


\displaystyle3\iiint_R(x^2+y^2+z^2)\,\mathrm dV=3\int_(z=0)^(z=4)\int_(\theta=0)^(\theta=2\pi)\int_(r=0)^(r=2)(r^2+z^2)r\,\mathrm dr\,\mathrm d\theta\,\mathrm dz

=\displaystyle6\pi\int_(z=0)^(z=4)\int_(r=0)^(r=2)(r^3+rz^2)\,\mathrm dr\,\mathrm dz

=\displaystyle12\pi\int_(z=0)^(z=4)(2+z^2)\,\mathrm dz

=352\pi
User Ashraful Haque
by
5.9k points