200k views
4 votes
I need help solving for x: log x = 2.46 - 1.12 * log y

1 Answer

5 votes

\bf log_{{ a}}(xy)\implies log_{{ a}}(x)+log_{{ a}}(y) \\\\\\ % Logarithm of exponentials log_{{ a}}\left( x^{{ b}} \right)\implies {{ b}}\cdot log_{{ a}}(x) \\\\\\ {{ a}}^{log_{{ a}}x}=x\impliedby \textit{log cancellation rule}\\\\ -----------------------------\\\\


\bf log(x)=2.46-1.12log(y)\iff log_(10)(x)=2.46-1.12log_(10)(y) \\\\\\ log_(10)(x)=2.46-log_(10)(y^(1.12))\implies log_(10)(x)+log_(10)(y^(1.12))=2.46 \\\\\\ log_(10)(x\cdot y^(1.12))=2.46\implies 10^{\cfrac{}{}log_(10)(x\cdot y^(1.12))}=10^(2.46) \\\\\\ xy^(1.12)=10^(2.46)\implies \boxed{x=\cfrac{10^(2.46)}{y^(1.12)}}
User Heikura
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories