125k views
3 votes
Find the solution to the initial value problem that is a non-zero polynomial function in x.
xy'-15y=(4 x^(2) -3x+7) y^{ (4)/(5) }, y(1)=0

1 Answer

0 votes
Bernoulli type.


xy'-15y=(4x^2-3x+7_y^(4/5)

xy^(-4/5)y'-15y^(1/5)=4x^2-3x+7

Let
z=y^(1/5) so that
z'=\frac15y^(-4/5). Then the ODE becomes linear in
z with


5xz'-15z=4x^2-3x+7

z'-\frac3xz=\frac45x-\frac35+\frac7{5x}

\frac1{x^3}z'-\frac3{x^4}z=\frac4{5x^2}-\frac3{5x^3}+\frac7{5x^4}

\left(\frac1{x^3}z\right)'=\frac4{5x^2}-\frac3{5x^3}+\frac7{5x^4}

\frac1{x^3}z=-\frac4{5x}+\frac3{10x^2}-\frac7{15x^3}+C

z=Cx^3-\frac45x^2+\frac3{10}x-\frac7{15}


y^(1/5)=Cx^3-\frac45x^2+\frac3{10}x-\frac7{15}

y=\left(Cx^3-\frac45x^2+\frac3{10}x-\frac7{15}\right)^5

Given that
y(1)=0, we have


0=\left(C-\frac45+\frac3{10}-\frac7{15}\right)^5

\implies C=(29)/(30)

and so the particular solution is


y=\left((29)/(30)x^3-\frac45x^2+\frac3{10}x-\frac7{15}\right)^5

Feel free to expand the solution to get it in the standard polynomial form.
User Jolan DAUMAS
by
8.4k points

No related questions found