125k views
3 votes
Find the solution to the initial value problem that is a non-zero polynomial function in x.
xy'-15y=(4 x^(2) -3x+7) y^{ (4)/(5) }, y(1)=0

1 Answer

0 votes
Bernoulli type.


xy'-15y=(4x^2-3x+7_y^(4/5)

xy^(-4/5)y'-15y^(1/5)=4x^2-3x+7

Let
z=y^(1/5) so that
z'=\frac15y^(-4/5). Then the ODE becomes linear in
z with


5xz'-15z=4x^2-3x+7

z'-\frac3xz=\frac45x-\frac35+\frac7{5x}

\frac1{x^3}z'-\frac3{x^4}z=\frac4{5x^2}-\frac3{5x^3}+\frac7{5x^4}

\left(\frac1{x^3}z\right)'=\frac4{5x^2}-\frac3{5x^3}+\frac7{5x^4}

\frac1{x^3}z=-\frac4{5x}+\frac3{10x^2}-\frac7{15x^3}+C

z=Cx^3-\frac45x^2+\frac3{10}x-\frac7{15}


y^(1/5)=Cx^3-\frac45x^2+\frac3{10}x-\frac7{15}

y=\left(Cx^3-\frac45x^2+\frac3{10}x-\frac7{15}\right)^5

Given that
y(1)=0, we have


0=\left(C-\frac45+\frac3{10}-\frac7{15}\right)^5

\implies C=(29)/(30)

and so the particular solution is


y=\left((29)/(30)x^3-\frac45x^2+\frac3{10}x-\frac7{15}\right)^5

Feel free to expand the solution to get it in the standard polynomial form.
User Jolan DAUMAS
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.