146k views
0 votes
Use an appropriate substitution to solve the equation


y'- (8)/(x) y= \frac{ y^(5) } { x^(20) } and find the solution that satisfies y(1)=1.

1 Answer

3 votes

y'-\frac8xy=(y^5)/(x^(20))

This ODE is in standard Bernoulli form, so we can divide through both sides by
y^5 to get


y^(-5)y'-\frac8xy^(-4)=\frac1{x^(20)}

Substitute
z=y^(-4), so that
z'=-4y^(-5)y'. Then the ODE can be written as a linear one in
z:


-\frac14z'-\frac8xz=\frac1{x^(20)}

z'+\frac{32}xz=-\frac4{x^(20)}

Multiplying both sides by
x^(32) gives


x^(32)z'+32x^(31)z=-4x^(12)

(x^(32)z)'=-4x^(12)

x^(32)z=\displaystyle-4\int x^(12)\,\mathrm dx

x^(32)z=-\frac4{13}x^(13)+C

z=-\frac4{13x^(19)}+\frac C{x^(32)}

Back-substitute to solve for
y:


\frac1{y^4}=-\frac4{13x^(19)}+\frac C{x^(32)}

y^4=\frac1{Cx^(-32)-\frac4{13}x^(-19)}

y=\left(\frac{x^(32)}{C-\frac4{13}x^(13)}\right)^(1/4)

y=\frac{x^8}{(C-\frac4{13}x^(13))^(1/4)}

Given that
y(1)=1, you have


1=\frac{1^8}{(C-\frac4{13}1^(13))^(1/4)}

1=\frac1{(C-\frac4{13})^(1/4)}

1=\left(C-\frac4{13}\right)^(1/4)

1=C-\frac4{13}

C=(17)/(13)

so that the particular solution is


y=\frac{x^8}{((17)/(13)-\frac4{13}x^(13))^(1/4)}
User ShuggyCoUk
by
8.0k points

No related questions found