135k views
4 votes
75 points. Will give certified if work is shown and the answer is correct.

Determine the difference between the volumes of two dwarf planets. Where one planet has a radius of 832 mi; while the other has a radius of 829 mi (express your volumes and final answers in terms of
\pi )

1 Answer

1 vote
Volume of the first dwarf planet (r₁ = 832 mi):


V_1=(4)/(3)\cdot\pi\cdot r_1^3=(4)/(3)\cdot\pi\cdot 832^3=(2303721472)/(3)\pi\approx7.679\cdot10^8\pi\,\text{mi}^3

Volume of the second dwarf planet (r₂ = 829 mi):


V_2=(4)/(3)\cdot\pi\cdot r_2^3=(4)/(3)\cdot\pi\cdot 829^3=(2278891156)/(3)\pi\approx7.5963\cdot10^8\pi\,\text{mi}^3

So difference between the volumes is:


V_1-V_2\approx7.679\cdot10^8\pi-7.5963\cdot10^8\pi=0.0827\cdot10^8\pi=\boxed{8270000\pi\,\text{mi}^3}

or if we want exact value (we use (a³-b³) = (a-b)(a²+ab+b²) ):


V_1-V_2=(4)/(3)\cdot\pi\cdot r_1^3-(4)/(3)\cdot\pi\cdot r_2^3=(4)/(3)\pi(r_1^3-r_2^3)=(4)/(3)\pi(832^3-829^3)=\\\\\\=(4)/(3)\pi(832-829)(832^2+832\cdot829+829^2)=\\\\\\=(4)/(3)\pi\cdot3(692224+689728+687241)=4\pi\cdot2069193=\boxed{8276772\pi\,\text{mi}^3}
User Orli
by
7.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories