227k views
0 votes
Find S15 for the geometric series 72 + 12 + 2 + +…

1 Answer

0 votes

S_(15)=72+12+\cdots+\frac1{181398528}+\frac1{1088391168}

S_(15)=72\left(\frac16\right)^0+72\left(\frac16\right)^1+\cdots+72\left(\frac16\right)^(13)+72\left(\frac16\right)^(14)

S_(15)=72\displaystyle\sum_(i=1)^(15)\left(\frac16\right)^(i-1)


\frac16S_(15)=72\displaystyle\sum_(i=1)^(15)\left(\frac16\right)^i


\implies S_(15)-\frac16S_(15)=72\displaystyle\sum_(i=1)^(15)\bigg(\left(\frac16\right)^(i-1)-\left(\frac16\right)^i\bigg)

\frac56S_(15)=72\bigg(\left(1-\frac16\right)+\left(\frac16-\frac1{6^2}\right)+\cdots+\left(\frac1{6^(13)}-\frac1{6^(14)}\right)+\left(\frac1{6^(14)}-\frac1{6^(15)}\right)\bigg)

\frac56S_(15)=72\left(1-\frac1{6^(15)}\right)

S_(15)=\frac{432}5*(6^(15)-1)/(6^(15))=86.4
User Roay Spol
by
7.8k points