106k views
2 votes
This is not really a question because I already know the answer to it but I will give 34 points for someone that can answer this. What is the definite integral from 1 to ∞ for the function e^-x (derivative with respect to x).

User Adam Haber
by
8.6k points

1 Answer

1 vote

Answer:


\displaystyle \int\limits^(\infty)_1 {e^(-x)} \, dx = (1)/(e)

General Formulas and Concepts:

Calculus

Limits

Limit Property [Addition/Subtraction]:
\displaystyle \lim_(x \to c) [f(x) \pm g(x)] = \lim_(x \to c) f(x) \pm \lim_(x \to c) g(x)

Limit Property [Multiplied Constant]:
\displaystyle \lim_(x \to c) bf(x) = b \lim_(x \to c) f(x)

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:
\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Explanation:

Step 1: Define

Identify


\displaystyle \int\limits^(\infty)_1 {e^(-x)} \, dx

Step 2: Integrate Pt. 1

  1. [Integral] Rewrite [Improper Integral]:
    \displaystyle \int\limits^(\infty)_1 {e^(-x)} \, dx = \lim_(b \to \infty) \int\limits^b_1 {e^(-x)} \, dx

Step 3: Integrate Pt. 2

Identify variables for u-substitution.

  1. Set u:
    \displaystyle u = -x
  2. [u] Differentiate [Basic Power Rule, Derivative Properties]:
    \displaystyle du = -dx
  3. [Bounds] Switch:
    \displaystyle \left \{ {{x = b ,\ u = -b} \atop {x = 1 ,\ u = -1}} \right.

Step 4: Integrate Pt. 3

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int\limits^(\infty)_1 {e^(-x)} \, dx = \lim_(b \to \infty) -\int\limits^b_1 {-e^(-x)} \, dx
  2. [Integral] U-Substitution:
    \displaystyle \int\limits^(\infty)_1 {e^(-x)} \, dx = \lim_(b \to \infty) -\int\limits^(-b)_(-1) {e^u} \, du
  3. [Integral] Rewrite [Limit Property - Multiplied Constant]:
    \displaystyle \int\limits^(\infty)_1 {e^(-x)} \, dx = -\lim_(b \to \infty) \int\limits^(-b)_(-1) {e^u} \, du
  4. [Integral] Exponential Integration:
    \displaystyle \int\limits^(\infty)_1 {e^(-x)} \, dx = -\lim_(b \to \infty) e^u \bigg| \limits^(-b)_(-1)
  5. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
    \displaystyle \int\limits^(\infty)_1 {e^(-x)} \, dx = -\lim_(b \to \infty) \big( e^(-b) - e^(-1) \big)
  6. Rewrite:
    \displaystyle \int\limits^(\infty)_1 {e^(-x)} \, dx = -\lim_(b \to \infty) \bigg( (1)/(e^b) - (1)/(e) \bigg)
  7. Evaluate limit:
    \displaystyle \int\limits^(\infty)_1 {e^(-x)} \, dx = -\bigg( 0 - (1)/(e) \bigg)
  8. Simplify:
    \displaystyle \int\limits^(\infty)_1 {e^(-x)} \, dx = (1)/(e)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

User Amaurys
by
7.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories