145,189 views
17 votes
17 votes
Need help with homework

User Nguyen Lam Phuc
by
3.0k points

1 Answer

25 votes
25 votes

Trigonometric Ratios

A right triangle has one angle of 90° and two acute angles. There are special proportions between the side lengths called the trigonometric ratios.

All the trigonometric ratios in a right triangle are positive.

We need to use some trigonometric identities to find the other five ratios, given one of them:


\begin{gathered} \sin ^2\theta+\cos ^2\theta=1 \\ \tan \theta=(\sin \theta)/(\cos \theta) \\ \csc \theta=(1)/(\sin \theta) \\ \sec \theta=(1)/(\cos \theta) \\ \cot \theta=(\cos\theta)/(\sin\theta)=(1)/(\tan \theta) \end{gathered}

We are given:


\sin \theta=(6)/(11)

From the first identity, solve for the cosine:


\cos \theta=√(1-\sin^2\theta)

Substituting:


\begin{gathered} \cos \theta=\sqrt[]{1-((6)/(11))^2} \\ \cos \theta=\sqrt[]{1-(36)/(121)} \\ \cos \theta=\sqrt[]{(121-36)/(121)} \\ \cos \theta=\sqrt[]{(85)/(121)} \\ \cos \theta=\frac{\sqrt[]{85}}{11} \end{gathered}

Calculate the tangent:


\begin{gathered} \tan \theta=\frac{(6)/(11)}{\frac{\sqrt[]{85}}{11}} \\ \tan \theta=\frac{6}{\sqrt[]{85}} \\ \text{Rationalizing:} \\ \tan \theta=\frac{6}{\sqrt[]{85}}\cdot\frac{\sqrt[]{85}}{\sqrt[]{85}} \\ \tan \theta=\frac{6\sqrt[]{85}}{85} \end{gathered}

Calculate the cosecant:


\begin{gathered} \csc \theta=(1)/((6)/(11)) \\ \csc \theta=(11)/(6) \end{gathered}

Calculate the secant:


\begin{gathered} \sec \theta=\frac{1}{\frac{\sqrt[]{85}}{11}} \\ \sec \theta=\frac{11}{\sqrt[]{85}} \\ \text{Rationalizing:} \\ \sec \theta=\frac{11}{\sqrt[]{85}}\cdot\frac{\sqrt[]{85}}{\sqrt[]{85}} \\ \sec \theta=\frac{11\sqrt[]{85}}{85} \end{gathered}

Finally, calculate the cotangent:


\begin{gathered} \cot \theta=\frac{\frac{\sqrt[]{85}}{11}}{(6)/(11)} \\ \cot \theta=\frac{\sqrt[]{85}}{6} \end{gathered}

User Angelena
by
3.1k points